Spaces:
Sleeping
Sleeping
# Copyright (c) OpenMMLab. All rights reserved. | |
import numpy as np | |
import pytest | |
import torch | |
class TestNmsRotated: | |
def test_ml_nms_rotated(self): | |
from mmcv.ops import nms_rotated | |
np_boxes = np.array( | |
[[6.0, 3.0, 8.0, 7.0, 0.5, 0.7], [3.0, 6.0, 9.0, 11.0, 0.6, 0.8], | |
[3.0, 7.0, 10.0, 12.0, 0.3, 0.5], [1.0, 4.0, 13.0, 7.0, 0.6, 0.9] | |
], | |
dtype=np.float32) | |
np_labels = np.array([1, 0, 1, 0], dtype=np.float32) | |
np_expect_dets = np.array( | |
[[1.0, 4.0, 13.0, 7.0, 0.6], [3.0, 6.0, 9.0, 11.0, 0.6], | |
[6.0, 3.0, 8.0, 7.0, 0.5]], | |
dtype=np.float32) | |
np_expect_keep_inds = np.array([3, 1, 0], dtype=np.int64) | |
boxes = torch.from_numpy(np_boxes).cuda() | |
labels = torch.from_numpy(np_labels).cuda() | |
# test cw angle definition | |
dets, keep_inds = nms_rotated(boxes[:, :5], boxes[:, -1], 0.5, labels) | |
assert np.allclose(dets.cpu().numpy()[:, :5], np_expect_dets) | |
assert np.allclose(keep_inds.cpu().numpy(), np_expect_keep_inds) | |
# test ccw angle definition | |
boxes[..., -2] *= -1 | |
dets, keep_inds = nms_rotated( | |
boxes[:, :5], boxes[:, -1], 0.5, labels, clockwise=False) | |
dets[..., -2] *= -1 | |
assert np.allclose(dets.cpu().numpy()[:, :5], np_expect_dets) | |
assert np.allclose(keep_inds.cpu().numpy(), np_expect_keep_inds) | |
def test_nms_rotated(self): | |
from mmcv.ops import nms_rotated | |
np_boxes = np.array( | |
[[6.0, 3.0, 8.0, 7.0, 0.5, 0.7], [3.0, 6.0, 9.0, 11.0, 0.6, 0.8], | |
[3.0, 7.0, 10.0, 12.0, 0.3, 0.5], [1.0, 4.0, 13.0, 7.0, 0.6, 0.9] | |
], | |
dtype=np.float32) | |
np_expect_dets = np.array( | |
[[1.0, 4.0, 13.0, 7.0, 0.6], [3.0, 6.0, 9.0, 11.0, 0.6], | |
[6.0, 3.0, 8.0, 7.0, 0.5]], | |
dtype=np.float32) | |
np_expect_keep_inds = np.array([3, 1, 0], dtype=np.int64) | |
boxes = torch.from_numpy(np_boxes).cuda() | |
# test cw angle definition | |
dets, keep_inds = nms_rotated(boxes[:, :5], boxes[:, -1], 0.5) | |
assert np.allclose(dets.cpu().numpy()[:, :5], np_expect_dets) | |
assert np.allclose(keep_inds.cpu().numpy(), np_expect_keep_inds) | |
# test ccw angle definition | |
boxes[..., -2] *= -1 | |
dets, keep_inds = nms_rotated( | |
boxes[:, :5], boxes[:, -1], 0.5, clockwise=False) | |
dets[..., -2] *= -1 | |
assert np.allclose(dets.cpu().numpy()[:, :5], np_expect_dets) | |
assert np.allclose(keep_inds.cpu().numpy(), np_expect_keep_inds) | |
def test_batched_nms(self): | |
# test batched_nms with nms_rotated | |
from mmcv.ops import batched_nms | |
np_boxes = np.array( | |
[[6.0, 3.0, 8.0, 7.0, 0.5, 0.7], [3.0, 6.0, 9.0, 11.0, 0.6, 0.8], | |
[3.0, 7.0, 10.0, 12.0, 0.3, 0.5], [1.0, 4.0, 13.0, 7.0, 0.6, 0.9] | |
], | |
dtype=np.float32) | |
np_labels = np.array([1, 0, 1, 0], dtype=np.float32) | |
np_expect_agnostic_dets = np.array( | |
[[1.0, 4.0, 13.0, 7.0, 0.6], [3.0, 6.0, 9.0, 11.0, 0.6], | |
[6.0, 3.0, 8.0, 7.0, 0.5]], | |
dtype=np.float32) | |
np_expect_agnostic_keep_inds = np.array([3, 1, 0], dtype=np.int64) | |
np_expect_dets = np.array( | |
[[1.0, 4.0, 13.0, 7.0, 0.6], [3.0, 6.0, 9.0, 11.0, 0.6], | |
[6.0, 3.0, 8.0, 7.0, 0.5], [3.0, 7.0, 10.0, 12.0, 0.3]], | |
dtype=np.float32) | |
np_expect_keep_inds = np.array([3, 1, 0, 2], dtype=np.int64) | |
nms_cfg = dict(type='nms_rotated', iou_threshold=0.5) | |
# test class_agnostic is True | |
boxes, keep = batched_nms( | |
torch.from_numpy(np_boxes[:, :5]), | |
torch.from_numpy(np_boxes[:, -1]), | |
torch.from_numpy(np_labels), | |
nms_cfg, | |
class_agnostic=True) | |
assert np.allclose(boxes.cpu().numpy()[:, :5], np_expect_agnostic_dets) | |
assert np.allclose(keep.cpu().numpy(), np_expect_agnostic_keep_inds) | |
# test class_agnostic is False | |
boxes, keep = batched_nms( | |
torch.from_numpy(np_boxes[:, :5]), | |
torch.from_numpy(np_boxes[:, -1]), | |
torch.from_numpy(np_labels), | |
nms_cfg, | |
class_agnostic=False) | |
assert np.allclose(boxes.cpu().numpy()[:, :5], np_expect_dets) | |
assert np.allclose(keep.cpu().numpy(), np_expect_keep_inds) | |