Spaces:
Sleeping
Sleeping
# Copyright (c) OpenMMLab. All rights reserved. | |
import pytest | |
import torch | |
from mmcv.ops.multi_scale_deform_attn import ( | |
MultiScaleDeformableAttention, MultiScaleDeformableAttnFunction, | |
multi_scale_deformable_attn_pytorch) | |
_USING_PARROTS = True | |
try: | |
from parrots.autograd import gradcheck | |
except ImportError: | |
from torch.autograd import gradcheck | |
_USING_PARROTS = False | |
def test_multiscale_deformable_attention(device_type): | |
with pytest.raises(ValueError): | |
# embed_dims must be divisible by num_heads, | |
MultiScaleDeformableAttention( | |
embed_dims=256, | |
num_heads=7, | |
) | |
device = torch.device(device_type) | |
msda = MultiScaleDeformableAttention( | |
embed_dims=3, num_levels=2, num_heads=3) | |
msda.init_weights() | |
num_query = 5 | |
bs = 1 | |
embed_dims = 3 | |
query = torch.rand(num_query, bs, embed_dims).to(device) | |
key = torch.rand(num_query, bs, embed_dims).to(device) | |
spatial_shapes = torch.Tensor([[2, 2], [1, 1]]).long().to(device) | |
level_start_index = torch.Tensor([0, 4]).long().to(device) | |
reference_points = torch.rand(bs, num_query, 2, 2).to(device) | |
msda.to(device) | |
msda( | |
query, | |
key, | |
key, | |
reference_points=reference_points, | |
spatial_shapes=spatial_shapes, | |
level_start_index=level_start_index) | |
def test_forward_multi_scale_deformable_attn_pytorch(): | |
N, M, D = 1, 2, 2 | |
Lq, L, P = 2, 2, 2 | |
shapes = torch.as_tensor([(6, 4), (3, 2)], dtype=torch.long) | |
S = sum((H * W).item() for H, W in shapes) | |
torch.manual_seed(3) | |
value = torch.rand(N, S, M, D) * 0.01 | |
sampling_locations = torch.rand(N, Lq, M, L, P, 2) | |
attention_weights = torch.rand(N, Lq, M, L, P) + 1e-5 | |
attention_weights /= attention_weights.sum( | |
-1, keepdim=True).sum( | |
-2, keepdim=True) | |
multi_scale_deformable_attn_pytorch(value.double(), shapes, | |
sampling_locations.double(), | |
attention_weights.double()).detach() | |
def test_forward_equal_with_pytorch_double(): | |
N, M, D = 1, 2, 2 | |
Lq, L, P = 2, 2, 2 | |
shapes = torch.as_tensor([(6, 4), (3, 2)], dtype=torch.long).cuda() | |
level_start_index = torch.cat((shapes.new_zeros( | |
(1, )), shapes.prod(1).cumsum(0)[:-1])) | |
S = sum((H * W).item() for H, W in shapes) | |
torch.manual_seed(3) | |
value = torch.rand(N, S, M, D).cuda() * 0.01 | |
sampling_locations = torch.rand(N, Lq, M, L, P, 2).cuda() | |
attention_weights = torch.rand(N, Lq, M, L, P).cuda() + 1e-5 | |
attention_weights /= attention_weights.sum( | |
-1, keepdim=True).sum( | |
-2, keepdim=True) | |
im2col_step = 2 | |
output_pytorch = multi_scale_deformable_attn_pytorch( | |
value.double(), shapes, sampling_locations.double(), | |
attention_weights.double()).detach().cpu() | |
output_cuda = MultiScaleDeformableAttnFunction.apply( | |
value.double(), shapes, level_start_index, sampling_locations.double(), | |
attention_weights.double(), im2col_step).detach().cpu() | |
assert torch.allclose(output_cuda, output_pytorch) | |
max_abs_err = (output_cuda - output_pytorch).abs().max() | |
max_rel_err = ((output_cuda - output_pytorch).abs() / | |
output_pytorch.abs()).max() | |
assert max_abs_err < 1e-18 | |
assert max_rel_err < 1e-15 | |
def test_forward_equal_with_pytorch_float(): | |
N, M, D = 1, 2, 2 | |
Lq, L, P = 2, 2, 2 | |
shapes = torch.as_tensor([(6, 4), (3, 2)], dtype=torch.long).cuda() | |
level_start_index = torch.cat((shapes.new_zeros( | |
(1, )), shapes.prod(1).cumsum(0)[:-1])) | |
S = sum((H * W).item() for H, W in shapes) | |
torch.manual_seed(3) | |
value = torch.rand(N, S, M, D).cuda() * 0.01 | |
sampling_locations = torch.rand(N, Lq, M, L, P, 2).cuda() | |
attention_weights = torch.rand(N, Lq, M, L, P).cuda() + 1e-5 | |
attention_weights /= attention_weights.sum( | |
-1, keepdim=True).sum( | |
-2, keepdim=True) | |
im2col_step = 2 | |
output_pytorch = multi_scale_deformable_attn_pytorch( | |
value, shapes, sampling_locations, attention_weights).detach().cpu() | |
output_cuda = MultiScaleDeformableAttnFunction.apply( | |
value, shapes, level_start_index, sampling_locations, | |
attention_weights, im2col_step).detach().cpu() | |
assert torch.allclose(output_cuda, output_pytorch, rtol=1e-2, atol=1e-3) | |
max_abs_err = (output_cuda - output_pytorch).abs().max() | |
max_rel_err = ((output_cuda - output_pytorch).abs() / | |
output_pytorch.abs()).max() | |
assert max_abs_err < 1e-9 | |
assert max_rel_err < 1e-6 | |
def test_gradient_numerical(channels, | |
grad_value=True, | |
grad_sampling_loc=True, | |
grad_attn_weight=True): | |
N, M, _ = 1, 2, 2 | |
Lq, L, P = 2, 2, 2 | |
shapes = torch.as_tensor([(3, 2), (2, 1)], dtype=torch.long).cuda() | |
level_start_index = torch.cat((shapes.new_zeros( | |
(1, )), shapes.prod(1).cumsum(0)[:-1])) | |
S = sum((H * W).item() for H, W in shapes) | |
value = torch.rand(N, S, M, channels).cuda() * 0.01 | |
sampling_locations = torch.rand(N, Lq, M, L, P, 2).cuda() | |
attention_weights = torch.rand(N, Lq, M, L, P).cuda() + 1e-5 | |
attention_weights /= attention_weights.sum( | |
-1, keepdim=True).sum( | |
-2, keepdim=True) | |
im2col_step = 2 | |
func = MultiScaleDeformableAttnFunction.apply | |
value.requires_grad = grad_value | |
sampling_locations.requires_grad = grad_sampling_loc | |
attention_weights.requires_grad = grad_attn_weight | |
if _USING_PARROTS: | |
assert gradcheck( | |
func, (value.double(), shapes, level_start_index, | |
sampling_locations.double(), attention_weights.double(), | |
im2col_step), | |
no_grads=[shapes, level_start_index]) | |
else: | |
assert gradcheck(func, (value.double(), shapes, level_start_index, | |
sampling_locations.double(), | |
attention_weights.double(), im2col_step)) | |