Spaces:
Sleeping
Sleeping
# Copyright (c) OpenMMLab. All rights reserved. | |
import pytest | |
import torch | |
_USING_PARROTS = True | |
try: | |
from parrots.autograd import gradcheck | |
except ImportError: | |
from torch.autograd import gradcheck, gradgradcheck | |
_USING_PARROTS = False | |
class TestFusedBiasLeakyReLU: | |
def setup_class(cls): | |
if not torch.cuda.is_available(): | |
return | |
cls.input_tensor = torch.randn((2, 2, 2, 2), requires_grad=True).cuda() | |
cls.bias = torch.zeros(2, requires_grad=True).cuda() | |
def test_gradient(self): | |
from mmcv.ops import FusedBiasLeakyReLU | |
if _USING_PARROTS: | |
gradcheck( | |
FusedBiasLeakyReLU(2).cuda(), | |
self.input_tensor, | |
delta=1e-4, | |
pt_atol=1e-3) | |
else: | |
gradcheck( | |
FusedBiasLeakyReLU(2).cuda(), | |
self.input_tensor, | |
eps=1e-4, | |
atol=1e-3) | |
def test_gradgradient(self): | |
from mmcv.ops import FusedBiasLeakyReLU | |
gradgradcheck( | |
FusedBiasLeakyReLU(2).cuda(), | |
self.input_tensor, | |
eps=1e-4, | |
atol=1e-3) | |