Spaces:
Sleeping
Sleeping
# Copyright (c) OpenMMLab. All rights reserved. | |
import pytest | |
import torch | |
from mmcv.ops import Correlation | |
_input1 = [[[[1., 2., 3.], [0., 1., 2.], [3., 5., 2.]]]] | |
_input2 = [[[[1., 2., 3.], [3., 1., 2.], [8., 5., 2.]]]] | |
gt_out_shape = (1, 1, 1, 3, 3) | |
_gt_out = [[[[[1., 4., 9.], [0., 1., 4.], [24., 25., 4.]]]]] | |
gt_input1_grad = [[[[1., 2., 3.], [3., 1., 2.], [8., 5., 2.]]]] | |
def assert_equal_tensor(tensor_a, tensor_b): | |
assert tensor_a.eq(tensor_b).all() | |
class TestCorrelation: | |
def _test_correlation(self, dtype=torch.float): | |
layer = Correlation(max_displacement=0) | |
input1 = torch.tensor(_input1, dtype=dtype).cuda() | |
input2 = torch.tensor(_input2, dtype=dtype).cuda() | |
input1.requires_grad = True | |
input2.requires_grad = True | |
out = layer(input1, input2) | |
out.backward(torch.ones_like(out)) | |
# `eq_cpu` is not implemented for 'Half' in torch1.5.0, | |
# so we need to make a comparison for cuda tensor | |
# rather than cpu tensor | |
gt_out = torch.tensor(_gt_out, dtype=dtype).cuda() | |
assert_equal_tensor(out, gt_out) | |
assert_equal_tensor(input1.grad.detach(), input2) | |
assert_equal_tensor(input2.grad.detach(), input1) | |
def test_correlation(self): | |
self._test_correlation(torch.float) | |
self._test_correlation(torch.double) | |
self._test_correlation(torch.half) | |