Spaces:
Sleeping
Sleeping
# Copyright (c) OpenMMLab. All rights reserved. | |
import pytest | |
import torch | |
from mmcv.ops import chamfer_distance | |
def test_chamfer_distance(): | |
pointset1 = torch.tensor( | |
[[[1.3, 9.39], [2.3, 9.39], [2.3, 10.39], [1.3, 10.39]], | |
[[1.0, 9.39], [3.0, 9.39], [3.0, 10.39], [1.0, 10.39]], | |
[[1.6, 9.99], [2.3, 9.99], [2.3, 10.39], [1.6, 10.39]]], | |
device='cuda', | |
requires_grad=True) | |
pointset2 = torch.tensor( | |
[[[1.0, 9.39], [3.0, 9.39], [3.0, 10.39], [1.0, 10.39]], | |
[[1.3, 9.39], [2.3, 9.39], [2.3, 10.39], [1.3, 10.39]], | |
[[1.0, 9.39], [3.0, 9.39], [3.0, 10.39], [1.0, 10.39]]], | |
device='cuda', | |
requires_grad=True) | |
expected_dist1 = torch.tensor( | |
[[0.0900, 0.4900, 0.4900, 0.0900], [0.0900, 0.4900, 0.4900, 0.0900], | |
[0.5200, 0.6500, 0.4900, 0.3600]], | |
device='cuda') | |
expected_dist2 = torch.tensor( | |
[[0.0900, 0.4900, 0.4900, 0.0900], [0.0900, 0.4900, 0.4900, 0.0900], | |
[0.7200, 0.8500, 0.4900, 0.3600]], | |
device='cuda') | |
expected_pointset1_grad = torch.tensor( | |
[[[0.6000, 0.0000], [-1.4000, 0.0000], [-1.4000, 0.0000], | |
[0.6000, 0.0000]], | |
[[-0.6000, 0.0000], [1.4000, 0.0000], [1.4000, 0.0000], | |
[-0.6000, 0.0000]], | |
[[1.2000, -0.8000], [-1.4000, -0.8000], [-1.4000, 0.0000], | |
[1.2000, 0.0000]]], | |
device='cuda') | |
expected_pointset2_grad = torch.tensor( | |
[[[-0.6000, 0.0000], [1.4000, 0.0000], [1.4000, 0.0000], | |
[-0.6000, 0.0000]], | |
[[0.6000, 0.0000], [-1.4000, 0.0000], [-1.4000, 0.0000], | |
[0.6000, 0.0000]], | |
[[0.0000, 0.0000], [0.0000, 0.0000], [2.8000, 0.8000], | |
[-2.4000, 0.8000]]], | |
device='cuda') | |
dist1, dist2, idx1, idx2 = chamfer_distance(pointset1, pointset2) | |
dist1.backward(torch.ones_like(dist1)) | |
assert torch.allclose(dist1, expected_dist1, 1e-2) | |
assert torch.allclose(dist2, expected_dist2, 1e-2) | |
assert torch.allclose(pointset1.grad.data, expected_pointset1_grad, 1e-2) | |
assert torch.allclose(pointset2.grad.data, expected_pointset2_grad, 1e-2) | |