Spaces:
Sleeping
Sleeping
# Copyright (c) OpenMMLab. All rights reserved. | |
import os.path as osp | |
import cv2 | |
import numpy as np | |
import pytest | |
from numpy.testing import assert_array_equal | |
import mmcv | |
class TestGeometric: | |
def setup_class(cls): | |
cls.data_dir = osp.join(osp.dirname(__file__), '../data') | |
# the test img resolution is 400x300 | |
cls.img_path = osp.join(cls.data_dir, 'color.jpg') | |
cls.img = cv2.imread(cls.img_path) | |
def test_imresize(self): | |
resized_img = mmcv.imresize(self.img, (1000, 600)) | |
assert resized_img.shape == (600, 1000, 3) | |
resized_img, w_scale, h_scale = mmcv.imresize(self.img, (1000, 600), | |
True) | |
assert (resized_img.shape == (600, 1000, 3) and w_scale == 2.5 | |
and h_scale == 2.0) | |
resized_img_dst = np.empty((600, 1000, 3), dtype=self.img.dtype) | |
resized_img = mmcv.imresize(self.img, (1000, 600), out=resized_img_dst) | |
assert id(resized_img_dst) == id(resized_img) | |
assert_array_equal(resized_img_dst, | |
mmcv.imresize(self.img, (1000, 600))) | |
for mode in ['nearest', 'bilinear', 'bicubic', 'area', 'lanczos']: | |
resized_img = mmcv.imresize( | |
self.img, (1000, 600), interpolation=mode) | |
assert resized_img.shape == (600, 1000, 3) | |
# test pillow resize | |
for mode in [ | |
'nearest', 'bilinear', 'bicubic', 'box', 'lanczos', 'hamming' | |
]: | |
resized_img = mmcv.imresize( | |
self.img, (1000, 600), interpolation=mode, backend='pillow') | |
assert resized_img.shape == (600, 1000, 3) | |
# resize backend must be 'cv2' or 'pillow' | |
with pytest.raises(ValueError): | |
mmcv.imresize(self.img, (1000, 600), backend='not support') | |
def test_imresize_to_multiple(self): | |
# test size and keep_ratio = False | |
resized_img = mmcv.imresize_to_multiple( | |
self.img, divisor=16, size=(511, 513), keep_ratio=False) | |
assert resized_img.shape == (528, 512, 3) | |
resized_img = mmcv.imresize_to_multiple( | |
self.img, divisor=(16, 32), size=(511, 513), keep_ratio=False) | |
assert resized_img.shape == (544, 512, 3) | |
# test size, keep_ratio = True, and return_scale | |
resized_img, w_scale, h_scale = mmcv.imresize_to_multiple( | |
self.img, | |
divisor=16, | |
size=(1000, 600), | |
keep_ratio=True, | |
return_scale=True) | |
assert resized_img.shape == ( | |
608, 800, 3) and h_scale == 608 / 300 and w_scale == 800 / 400 | |
resized_img, w_scale, h_scale = mmcv.imresize_to_multiple( | |
self.img, | |
divisor=(18, 16), | |
size=(1000, 600), | |
keep_ratio=True, | |
return_scale=True) | |
assert resized_img.shape == ( | |
608, 810, 3) and h_scale == 608 / 300 and w_scale == 810 / 400 | |
# test scale_factor and return_scale | |
resized_img, w_scale, h_scale = mmcv.imresize_to_multiple( | |
self.img, divisor=16, scale_factor=2, return_scale=True) | |
assert resized_img.shape == ( | |
608, 800, 3) and h_scale == 608 / 300 and w_scale == 800 / 400 | |
resized_img, w_scale, h_scale = mmcv.imresize_to_multiple( | |
self.img, divisor=16, scale_factor=(2, 3), return_scale=True) | |
assert resized_img.shape == ( | |
912, 800, 3) and h_scale == 912 / 300 and w_scale == 800 / 400 | |
resized_img, w_scale, h_scale = mmcv.imresize_to_multiple( | |
self.img, divisor=(18, 16), scale_factor=(2, 3), return_scale=True) | |
assert resized_img.shape == ( | |
912, 810, 3) and h_scale == 912 / 300 and w_scale == 810 / 400 | |
# one of size and scale_factor should be given | |
with pytest.raises(ValueError): | |
mmcv.imresize_to_multiple( | |
self.img, divisor=16, size=(1000, 600), scale_factor=2) | |
with pytest.raises(ValueError): | |
mmcv.imresize_to_multiple( | |
self.img, divisor=16, size=None, scale_factor=None) | |
def test_imresize_like(self): | |
a = np.zeros((100, 200, 3)) | |
resized_img = mmcv.imresize_like(self.img, a) | |
assert resized_img.shape == (100, 200, 3) | |
def test_rescale_size(self): | |
new_size, scale_factor = mmcv.rescale_size((400, 300), 1.5, True) | |
assert new_size == (600, 450) and scale_factor == 1.5 | |
new_size, scale_factor = mmcv.rescale_size((400, 300), 0.934, True) | |
assert new_size == (374, 280) and scale_factor == 0.934 | |
new_size = mmcv.rescale_size((400, 300), 1.5) | |
assert new_size == (600, 450) | |
new_size = mmcv.rescale_size((400, 300), 0.934) | |
assert new_size == (374, 280) | |
new_size, scale_factor = mmcv.rescale_size((400, 300), (1000, 600), | |
True) | |
assert new_size == (800, 600) and scale_factor == 2.0 | |
new_size, scale_factor = mmcv.rescale_size((400, 300), (180, 200), | |
True) | |
assert new_size == (200, 150) and scale_factor == 0.5 | |
new_size = mmcv.rescale_size((400, 300), (1000, 600)) | |
assert new_size == (800, 600) | |
new_size = mmcv.rescale_size((400, 300), (180, 200)) | |
assert new_size == (200, 150) | |
with pytest.raises(ValueError): | |
mmcv.rescale_size((400, 300), -0.5) | |
with pytest.raises(TypeError): | |
mmcv.rescale_size()((400, 300), [100, 100]) | |
def test_imrescale(self): | |
# rescale by a certain factor | |
resized_img = mmcv.imrescale(self.img, 1.5) | |
assert resized_img.shape == (450, 600, 3) | |
resized_img = mmcv.imrescale(self.img, 0.934) | |
assert resized_img.shape == (280, 374, 3) | |
# rescale by a certain max_size | |
# resize (400, 300) to (max_1000, max_600) | |
resized_img = mmcv.imrescale(self.img, (1000, 600)) | |
assert resized_img.shape == (600, 800, 3) | |
resized_img, scale = mmcv.imrescale( | |
self.img, (1000, 600), return_scale=True) | |
assert resized_img.shape == (600, 800, 3) and scale == 2.0 | |
# resize (400, 300) to (max_200, max_180) | |
resized_img = mmcv.imrescale(self.img, (180, 200)) | |
assert resized_img.shape == (150, 200, 3) | |
resized_img, scale = mmcv.imrescale( | |
self.img, (180, 200), return_scale=True) | |
assert resized_img.shape == (150, 200, 3) and scale == 0.5 | |
# test exceptions | |
with pytest.raises(ValueError): | |
mmcv.imrescale(self.img, -0.5) | |
with pytest.raises(TypeError): | |
mmcv.imrescale(self.img, [100, 100]) | |
def test_imflip(self): | |
# direction must be "horizontal" or "vertical" or "diagonal" | |
with pytest.raises(AssertionError): | |
mmcv.imflip(np.random.rand(80, 60, 3), direction='random') | |
# test horizontal flip (color image) | |
img = np.random.rand(80, 60, 3) | |
h, w, c = img.shape | |
flipped_img = mmcv.imflip(img) | |
assert flipped_img.shape == img.shape | |
for i in range(h): | |
for j in range(w): | |
for k in range(c): | |
assert flipped_img[i, j, k] == img[i, w - 1 - j, k] | |
# test vertical flip (color image) | |
flipped_img = mmcv.imflip(img, direction='vertical') | |
assert flipped_img.shape == img.shape | |
for i in range(h): | |
for j in range(w): | |
for k in range(c): | |
assert flipped_img[i, j, k] == img[h - 1 - i, j, k] | |
# test diagonal flip (color image) | |
flipped_img = mmcv.imflip(img, direction='diagonal') | |
assert flipped_img.shape == img.shape | |
for i in range(h): | |
for j in range(w): | |
for k in range(c): | |
assert flipped_img[i, j, k] == img[h - 1 - i, w - 1 - j, k] | |
# test horizontal flip (grayscale image) | |
img = np.random.rand(80, 60) | |
h, w = img.shape | |
flipped_img = mmcv.imflip(img) | |
assert flipped_img.shape == img.shape | |
for i in range(h): | |
for j in range(w): | |
assert flipped_img[i, j] == img[i, w - 1 - j] | |
# test vertical flip (grayscale image) | |
flipped_img = mmcv.imflip(img, direction='vertical') | |
assert flipped_img.shape == img.shape | |
for i in range(h): | |
for j in range(w): | |
assert flipped_img[i, j] == img[h - 1 - i, j] | |
# test diagonal flip (grayscale image) | |
flipped_img = mmcv.imflip(img, direction='diagonal') | |
assert flipped_img.shape == img.shape | |
for i in range(h): | |
for j in range(w): | |
assert flipped_img[i, j] == img[h - 1 - i, w - 1 - j] | |
def test_imflip_(self): | |
# direction must be "horizontal" or "vertical" or "diagonal" | |
with pytest.raises(AssertionError): | |
mmcv.imflip_(np.random.rand(80, 60, 3), direction='random') | |
# test horizontal flip (color image) | |
img = np.random.rand(80, 60, 3) | |
h, w, c = img.shape | |
img_for_flip = img.copy() | |
flipped_img = mmcv.imflip_(img_for_flip) | |
assert flipped_img.shape == img.shape | |
assert flipped_img.shape == img_for_flip.shape | |
assert id(flipped_img) == id(img_for_flip) | |
for i in range(h): | |
for j in range(w): | |
for k in range(c): | |
assert flipped_img[i, j, k] == img[i, w - 1 - j, k] | |
assert flipped_img[i, j, k] == img_for_flip[i, j, k] | |
# test vertical flip (color image) | |
img_for_flip = img.copy() | |
flipped_img = mmcv.imflip_(img_for_flip, direction='vertical') | |
assert flipped_img.shape == img.shape | |
assert flipped_img.shape == img_for_flip.shape | |
assert id(flipped_img) == id(img_for_flip) | |
for i in range(h): | |
for j in range(w): | |
for k in range(c): | |
assert flipped_img[i, j, k] == img[h - 1 - i, j, k] | |
assert flipped_img[i, j, k] == img_for_flip[i, j, k] | |
# test diagonal flip (color image) | |
img_for_flip = img.copy() | |
flipped_img = mmcv.imflip_(img_for_flip, direction='diagonal') | |
assert flipped_img.shape == img.shape | |
assert flipped_img.shape == img_for_flip.shape | |
assert id(flipped_img) == id(img_for_flip) | |
for i in range(h): | |
for j in range(w): | |
for k in range(c): | |
assert flipped_img[i, j, k] == img[h - 1 - i, w - 1 - j, k] | |
assert flipped_img[i, j, k] == img_for_flip[i, j, k] | |
# test horizontal flip (grayscale image) | |
img = np.random.rand(80, 60) | |
h, w = img.shape | |
img_for_flip = img.copy() | |
flipped_img = mmcv.imflip_(img_for_flip) | |
assert flipped_img.shape == img.shape | |
assert flipped_img.shape == img_for_flip.shape | |
assert id(flipped_img) == id(img_for_flip) | |
for i in range(h): | |
for j in range(w): | |
assert flipped_img[i, j] == img[i, w - 1 - j] | |
assert flipped_img[i, j] == img_for_flip[i, j] | |
# test vertical flip (grayscale image) | |
img_for_flip = img.copy() | |
flipped_img = mmcv.imflip_(img_for_flip, direction='vertical') | |
assert flipped_img.shape == img.shape | |
assert flipped_img.shape == img_for_flip.shape | |
assert id(flipped_img) == id(img_for_flip) | |
for i in range(h): | |
for j in range(w): | |
assert flipped_img[i, j] == img[h - 1 - i, j] | |
assert flipped_img[i, j] == img_for_flip[i, j] | |
# test diagonal flip (grayscale image) | |
img_for_flip = img.copy() | |
flipped_img = mmcv.imflip_(img_for_flip, direction='diagonal') | |
assert flipped_img.shape == img.shape | |
assert flipped_img.shape == img_for_flip.shape | |
assert id(flipped_img) == id(img_for_flip) | |
for i in range(h): | |
for j in range(w): | |
assert flipped_img[i, j] == img[h - 1 - i, w - 1 - j] | |
assert flipped_img[i, j] == img_for_flip[i, j] | |
def test_imcrop(self): | |
# yapf: disable | |
bboxes = np.array([[100, 100, 199, 199], # center | |
[0, 0, 150, 100], # left-top corner | |
[250, 200, 399, 299], # right-bottom corner | |
[0, 100, 399, 199], # wide | |
[150, 0, 299, 299]]) # tall | |
# yapf: enable | |
# crop one bbox | |
patch = mmcv.imcrop(self.img, bboxes[0, :]) | |
patches = mmcv.imcrop(self.img, bboxes[[0], :]) | |
assert patch.shape == (100, 100, 3) | |
patch_path = osp.join(self.data_dir, 'patches') | |
ref_patch = np.load(patch_path + '/0.npy') | |
assert_array_equal(patch, ref_patch) | |
assert isinstance(patches, list) and len(patches) == 1 | |
assert_array_equal(patches[0], ref_patch) | |
# crop with no scaling and padding | |
patches = mmcv.imcrop(self.img, bboxes) | |
assert len(patches) == bboxes.shape[0] | |
for i in range(len(patches)): | |
ref_patch = np.load(patch_path + f'/{i}.npy') | |
assert_array_equal(patches[i], ref_patch) | |
# crop with scaling and no padding | |
patches = mmcv.imcrop(self.img, bboxes, 1.2) | |
for i in range(len(patches)): | |
ref_patch = np.load(patch_path + f'/scale_{i}.npy') | |
assert_array_equal(patches[i], ref_patch) | |
# crop with scaling and padding | |
patches = mmcv.imcrop(self.img, bboxes, 1.2, pad_fill=[255, 255, 0]) | |
for i in range(len(patches)): | |
ref_patch = np.load(patch_path + f'/pad_{i}.npy') | |
assert_array_equal(patches[i], ref_patch) | |
patches = mmcv.imcrop(self.img, bboxes, 1.2, pad_fill=0) | |
for i in range(len(patches)): | |
ref_patch = np.load(patch_path + f'/pad0_{i}.npy') | |
assert_array_equal(patches[i], ref_patch) | |
def test_impad(self): | |
# grayscale image | |
img = np.random.rand(10, 10).astype(np.float32) | |
padded_img = mmcv.impad(img, padding=(0, 0, 2, 5), pad_val=0) | |
assert_array_equal(img, padded_img[:10, :10]) | |
assert_array_equal( | |
np.zeros((5, 12), dtype='float32'), padded_img[10:, :]) | |
assert_array_equal( | |
np.zeros((15, 2), dtype='float32'), padded_img[:, 10:]) | |
# RGB image | |
img = np.random.rand(10, 10, 3).astype(np.float32) | |
padded_img = mmcv.impad(img, padding=(0, 0, 2, 5), pad_val=0) | |
assert_array_equal(img, padded_img[:10, :10, :]) | |
assert_array_equal( | |
np.zeros((5, 12, 3), dtype='float32'), padded_img[10:, :, :]) | |
assert_array_equal( | |
np.zeros((15, 2, 3), dtype='float32'), padded_img[:, 10:, :]) | |
# RGB image with different values for three channels. | |
img = np.random.randint(256, size=(10, 10, 3)).astype('uint8') | |
padded_img = mmcv.impad( | |
img, padding=(0, 0, 2, 5), pad_val=(100, 110, 120)) | |
assert_array_equal(img, padded_img[:10, :10, :]) | |
assert_array_equal( | |
np.array([100, 110, 120], dtype='uint8') * np.ones( | |
(5, 12, 3), dtype='uint8'), padded_img[10:, :, :]) | |
assert_array_equal( | |
np.array([100, 110, 120], dtype='uint8') * np.ones( | |
(15, 2, 3), dtype='uint8'), padded_img[:, 10:, :]) | |
# Pad the grayscale image to shape (15, 12) | |
img = np.random.rand(10, 10).astype(np.float32) | |
padded_img = mmcv.impad(img, shape=(15, 12)) | |
assert_array_equal(img, padded_img[:10, :10]) | |
assert_array_equal( | |
np.zeros((5, 12), dtype='float32'), padded_img[10:, :]) | |
assert_array_equal( | |
np.zeros((15, 2), dtype='float32'), padded_img[:, 10:]) | |
# Pad the RGB image to shape (15, 12) | |
img = np.random.rand(10, 10, 3).astype(np.float32) | |
padded_img = mmcv.impad(img, shape=(15, 12)) | |
assert_array_equal(img, padded_img[:10, :10, :]) | |
assert_array_equal( | |
np.zeros((5, 12, 3), dtype='float32'), padded_img[10:, :, :]) | |
assert_array_equal( | |
np.zeros((15, 2, 3), dtype='float32'), padded_img[:, 10:, :]) | |
# Pad the RGB image to shape (15, 12) with different values for | |
# three channels. | |
img = np.random.randint(256, size=(10, 10, 3)).astype('uint8') | |
padded_img = mmcv.impad(img, shape=(15, 12), pad_val=(100, 110, 120)) | |
assert_array_equal(img, padded_img[:10, :10, :]) | |
assert_array_equal( | |
np.array([100, 110, 120], dtype='uint8') * np.ones( | |
(5, 12, 3), dtype='uint8'), padded_img[10:, :, :]) | |
assert_array_equal( | |
np.array([100, 110, 120], dtype='uint8') * np.ones( | |
(15, 2, 3), dtype='uint8'), padded_img[:, 10:, :]) | |
# RGB image with padding=[5, 2] | |
img = np.random.rand(10, 10, 3).astype(np.float32) | |
padded_img = mmcv.impad(img, padding=(5, 2), pad_val=0) | |
assert padded_img.shape == (14, 20, 3) | |
assert_array_equal(img, padded_img[2:12, 5:15, :]) | |
assert_array_equal( | |
np.zeros((2, 5, 3), dtype='float32'), padded_img[:2, :5, :]) | |
assert_array_equal( | |
np.zeros((2, 5, 3), dtype='float32'), padded_img[12:, :5, :]) | |
assert_array_equal( | |
np.zeros((2, 5, 3), dtype='float32'), padded_img[:2, 15:, :]) | |
assert_array_equal( | |
np.zeros((2, 5, 3), dtype='float32'), padded_img[12:, 15:, :]) | |
# RGB image with type(pad_val) = tuple | |
pad_val = (0, 1, 2) | |
img = np.random.rand(10, 10, 3).astype(np.float32) | |
padded_img = mmcv.impad(img, padding=(0, 0, 5, 2), pad_val=pad_val) | |
assert padded_img.shape == (12, 15, 3) | |
assert_array_equal(img, padded_img[:10, :10, :]) | |
assert_array_equal(pad_val[0] * np.ones((2, 15, 1), dtype='float32'), | |
padded_img[10:, :, 0:1]) | |
assert_array_equal(pad_val[1] * np.ones((2, 15, 1), dtype='float32'), | |
padded_img[10:, :, 1:2]) | |
assert_array_equal(pad_val[2] * np.ones((2, 15, 1), dtype='float32'), | |
padded_img[10:, :, 2:3]) | |
assert_array_equal(pad_val[0] * np.ones((12, 5, 1), dtype='float32'), | |
padded_img[:, 10:, 0:1]) | |
assert_array_equal(pad_val[1] * np.ones((12, 5, 1), dtype='float32'), | |
padded_img[:, 10:, 1:2]) | |
assert_array_equal(pad_val[2] * np.ones((12, 5, 1), dtype='float32'), | |
padded_img[:, 10:, 2:3]) | |
# test different padding mode with channel number = 3 | |
for mode in ['constant', 'edge', 'reflect', 'symmetric']: | |
img = np.random.rand(10, 10, 3).astype(np.float32) | |
padded_img = mmcv.impad( | |
img, padding=(0, 0, 5, 2), pad_val=pad_val, padding_mode=mode) | |
assert padded_img.shape == (12, 15, 3) | |
# test different padding mode with channel number = 1 | |
for mode in ['constant', 'edge', 'reflect', 'symmetric']: | |
img = np.random.rand(10, 10).astype(np.float32) | |
padded_img = mmcv.impad( | |
img, padding=(0, 0, 5, 2), pad_val=0, padding_mode=mode) | |
assert padded_img.shape == (12, 15) | |
# Padding must be a int or a 2, or 4 element tuple. | |
with pytest.raises(ValueError): | |
mmcv.impad(img, padding=(1, 1, 1)) | |
# pad_val must be a int or a tuple | |
with pytest.raises(TypeError): | |
mmcv.impad(img, padding=(1, 1, 1, 1), pad_val='wrong') | |
# When pad_val is a tuple, | |
# len(pad_val) should be equal to img.shape[-1] | |
img = np.random.rand(10, 10, 3).astype(np.float32) | |
with pytest.raises(AssertionError): | |
mmcv.impad(img, padding=3, pad_val=(100, 200)) | |
with pytest.raises(AssertionError): | |
mmcv.impad(img, padding=2, pad_val=0, padding_mode='unknown') | |
with pytest.raises(AssertionError): | |
mmcv.impad(img, shape=(12, 15), padding=(0, 0, 5, 2)) | |
# Pad shape smaller than image shape | |
padded_img = mmcv.impad(img, shape=(8, 8)) | |
assert padded_img.shape == (10, 10, 3) | |
def test_impad_to_multiple(self): | |
img = np.random.rand(11, 14, 3).astype(np.float32) | |
padded_img = mmcv.impad_to_multiple(img, 4) | |
assert padded_img.shape == (12, 16, 3) | |
img = np.random.rand(20, 12).astype(np.float32) | |
padded_img = mmcv.impad_to_multiple(img, 5) | |
assert padded_img.shape == (20, 15) | |
img = np.random.rand(20, 12).astype(np.float32) | |
padded_img = mmcv.impad_to_multiple(img, 2) | |
assert padded_img.shape == (20, 12) | |
def test_cutout(self): | |
img = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]).astype(np.uint8) | |
# shape must be int or tuple | |
with pytest.raises(AssertionError): | |
mmcv.cutout(img, 2.5) | |
# pad_val must be int or float or tuple with the same length | |
# of img channels | |
with pytest.raises(AssertionError): | |
mmcv.cutout(img, 1, (1, 2, 3)) | |
with pytest.raises(TypeError): | |
mmcv.cutout(img, 1, None) | |
# test cutout the whole img | |
assert_array_equal(mmcv.cutout(img, 6), np.zeros_like(img)) | |
# test not cutout | |
assert_array_equal(mmcv.cutout(img, 0), img) | |
# test cutout when shape is int | |
np.random.seed(0) | |
img_cutout = np.array([[1, 2, 3], [4, 0, 6], [7, 8, | |
9]]).astype(np.uint8) | |
assert_array_equal(mmcv.cutout(img, 1), img_cutout) | |
img_cutout = np.array([[1, 2, 3], [4, 10, 6], [7, 8, | |
9]]).astype(np.uint8) | |
assert_array_equal(mmcv.cutout(img, 1, pad_val=10), img_cutout) | |
# test cutout when shape is tuple | |
np.random.seed(0) | |
img_cutout = np.array([[1, 2, 3], [0, 0, 6], [7, 8, | |
9]]).astype(np.uint8) | |
assert_array_equal(mmcv.cutout(img, (1, 2)), img_cutout) | |
img_cutout = np.array([[1, 2, 3], [10, 10, 6], [7, 8, | |
9]]).astype(np.uint8) | |
assert_array_equal(mmcv.cutout(img, (1, 2), pad_val=10), img_cutout) | |
def test_imrotate(self): | |
img = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]).astype(np.uint8) | |
assert_array_equal(mmcv.imrotate(img, 0), img) | |
img_r = np.array([[7, 4, 1], [8, 5, 2], [9, 6, 3]]) | |
assert_array_equal(mmcv.imrotate(img, 90), img_r) | |
img_r = np.array([[3, 6, 9], [2, 5, 8], [1, 4, 7]]) | |
assert_array_equal(mmcv.imrotate(img, -90), img_r) | |
img = np.array([[1, 2, 3, 4], [5, 6, 7, 8]]).astype(np.uint8) | |
img_r = np.array([[0, 6, 2, 0], [0, 7, 3, 0]]) | |
assert_array_equal(mmcv.imrotate(img, 90), img_r) | |
img_r = np.array([[1, 0, 0, 0], [2, 0, 0, 0]]) | |
assert_array_equal(mmcv.imrotate(img, 90, center=(0, 0)), img_r) | |
img_r = np.array([[255, 6, 2, 255], [255, 7, 3, 255]]) | |
assert_array_equal(mmcv.imrotate(img, 90, border_value=255), img_r) | |
img_r = np.array([[5, 1], [6, 2], [7, 3], [8, 4]]) | |
assert_array_equal(mmcv.imrotate(img, 90, auto_bound=True), img_r) | |
with pytest.raises(ValueError): | |
mmcv.imrotate(img, 90, center=(0, 0), auto_bound=True) | |
def test_imshear(self): | |
img = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]).astype(np.uint8) | |
assert_array_equal(mmcv.imshear(img, 0), img) | |
# magnitude=1, horizontal | |
img_sheared = np.array([[1, 2, 3], [0, 4, 5], [0, 0, 7]], | |
dtype=np.uint8) | |
assert_array_equal(mmcv.imshear(img, 1), img_sheared) | |
# magnitude=-1, vertical | |
img_sheared = np.array([[1, 5, 9], [4, 8, 0], [7, 0, 0]], | |
dtype=np.uint8) | |
assert_array_equal(mmcv.imshear(img, -1, 'vertical'), img_sheared) | |
# magnitude=1, vertical, borderValue=100 | |
borderValue = 100 | |
img_sheared = np.array( | |
[[1, borderValue, borderValue], [4, 2, borderValue], [7, 5, 3]], | |
dtype=np.uint8) | |
assert_array_equal( | |
mmcv.imshear(img, 1, 'vertical', borderValue), img_sheared) | |
# magnitude=1, vertical, borderValue=100, img shape (h,w,3) | |
img = np.stack([img, img, img], axis=-1) | |
img_sheared = np.stack([img_sheared, img_sheared, img_sheared], | |
axis=-1) | |
assert_array_equal( | |
mmcv.imshear(img, 1, 'vertical', borderValue), img_sheared) | |
# test tuple format of borderValue | |
assert_array_equal( | |
mmcv.imshear(img, 1, 'vertical', | |
(borderValue, borderValue, borderValue)), img_sheared) | |
# test invalid length of borderValue | |
with pytest.raises(AssertionError): | |
mmcv.imshear(img, 0.5, 'horizontal', (borderValue, )) | |
# test invalid type of borderValue | |
with pytest.raises(ValueError): | |
mmcv.imshear(img, 0.5, 'horizontal', [borderValue]) | |
# test invalid value of direction | |
with pytest.raises(AssertionError): | |
mmcv.imshear(img, 0.5, 'diagonal') | |
def test_imtranslate(self): | |
img = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]], dtype=np.uint8) | |
assert_array_equal(mmcv.imtranslate(img, 0), img) | |
# offset=1, horizontal | |
img_translated = np.array([[128, 1, 2], [128, 4, 5], [128, 7, 8]], | |
dtype=np.uint8) | |
assert_array_equal( | |
mmcv.imtranslate(img, 1, border_value=128), img_translated) | |
# offset=-1, vertical | |
img_translated = np.array([[4, 5, 6], [7, 8, 9], [0, 0, 0]], | |
dtype=np.uint8) | |
assert_array_equal( | |
mmcv.imtranslate(img, -1, 'vertical'), img_translated) | |
# offset=-2, horizontal | |
img = np.array([[1, 2, 3, 4], [5, 6, 7, 8]], dtype=np.uint8) | |
img = np.stack([img, img, img], axis=-1) | |
img_translated = [[3, 4, 128, 128], [7, 8, 128, 128]] | |
img_translated = np.stack( | |
[img_translated, img_translated, img_translated], axis=-1) | |
assert_array_equal( | |
mmcv.imtranslate(img, -2, border_value=128), img_translated) | |
# offset=2, vertical | |
border_value = (110, 120, 130) | |
img_translated = np.stack([ | |
np.ones((2, 4)) * border_value[0], | |
np.ones((2, 4)) * border_value[1], | |
np.ones((2, 4)) * border_value[2] | |
], | |
axis=-1).astype(np.uint8) | |
assert_array_equal( | |
mmcv.imtranslate(img, 2, 'vertical', border_value), img_translated) | |
# test invalid number elements in border_value | |
with pytest.raises(AssertionError): | |
mmcv.imtranslate(img, 1, border_value=(1, )) | |
# test invalid type of border_value | |
with pytest.raises(ValueError): | |
mmcv.imtranslate(img, 1, border_value=[1, 2, 3]) | |
# test invalid value of direction | |
with pytest.raises(AssertionError): | |
mmcv.imtranslate(img, 1, 'diagonal') | |