Spaces:
Sleeping
Sleeping
"""Plotting utilities to visualize training logs.""" | |
import torch | |
import pandas as pd | |
import numpy as np | |
import seaborn as sns | |
import matplotlib.pyplot as plt | |
from pathlib import Path, PurePath | |
def plot_logs(logs, | |
fields=('class_error', 'loss_bbox_unscaled', 'mAP'), | |
ewm_col=0, | |
log_name='log.txt'): | |
"""Function to plot specific fields from training log(s). Plots both | |
training and test results. | |
:: Inputs - logs = list containing Path objects, each pointing to individual dir with a log file | |
- fields = which results to plot from each log file - plots both training and test for each field. | |
- ewm_col = optional, which column to use as the exponential weighted smoothing of the plots | |
- log_name = optional, name of log file if different than default 'log.txt'. | |
:: Outputs - matplotlib plots of results in fields, color coded for each log file. | |
- solid lines are training results, dashed lines are test results. | |
""" | |
func_name = 'plot_utils.py::plot_logs' | |
if not isinstance(logs, list): | |
if isinstance(logs, PurePath): | |
logs = [logs] | |
print( | |
f'{func_name} info: logs param expects a list argument, converted to list[Path].' | |
) | |
else: | |
raise ValueError( | |
f'{func_name} - invalid argument for logs parameter.\n \ | |
Expect list[Path] or single Path obj, received {type(logs)}') | |
for i, dir in enumerate(logs): | |
if not isinstance(dir, PurePath): | |
raise ValueError( | |
f'{func_name} - non-Path object in logs argument of {type(dir)}: \n{dir}' | |
) | |
if not dir.exists(): | |
raise ValueError( | |
f'{func_name} - invalid directory in logs argument:\n{dir}') | |
# verify log_name exists | |
fn = Path(dir / log_name) | |
if not fn.exists(): | |
print( | |
f'-> missing {log_name}. Have you gotten to Epoch 1 in training?' | |
) | |
print(f'--> full path of missing log file: {fn}') | |
return | |
# load log file(s) and plot | |
dfs = [pd.read_json(Path(p) / log_name, lines=True) for p in logs] | |
fig, axs = plt.subplots(ncols=len(fields), figsize=(16, 5)) | |
for df, color in zip(dfs, sns.color_palette(n_colors=len(logs))): | |
for j, field in enumerate(fields): | |
if field == 'mAP': | |
coco_eval = pd.DataFrame( | |
np.stack( | |
df.test_coco_eval_bbox.dropna().values)[:, 1]).ewm( | |
com=ewm_col).mean() | |
axs[j].plot(coco_eval, c=color) | |
else: | |
df.interpolate().ewm(com=ewm_col).mean().plot( | |
y=[f'train_{field}', f'test_{field}'], | |
ax=axs[j], | |
color=[color] * 2, | |
style=['-', '--']) | |
for ax, field in zip(axs, fields): | |
if field == 'mAP': | |
ax.legend([Path(p).name for p in logs]) | |
ax.set_title(field) | |
else: | |
ax.legend([f'train', f'test']) | |
ax.set_title(field) | |
return fig, axs | |
def plot_precision_recall(files, naming_scheme='iter'): | |
if naming_scheme == 'exp_id': | |
# name becomes exp_id | |
names = [f.parts[-3] for f in files] | |
elif naming_scheme == 'iter': | |
names = [f.stem for f in files] | |
else: | |
raise ValueError(f'not supported {naming_scheme}') | |
fig, axs = plt.subplots(ncols=2, figsize=(16, 5)) | |
for f, color, name in zip(files, | |
sns.color_palette('Blues', n_colors=len(files)), | |
names): | |
data = torch.load(f) | |
precision = data['precision'] | |
recall = data['params'].recThrs | |
scores = data['scores'] | |
precision = precision[0, :, :, 0, -1].mean(1) | |
scores = scores[0, :, :, 0, -1].mean(1) | |
prec = precision.mean() | |
rec = data['recall'][0, :, 0, -1].mean() | |
print(f'{naming_scheme} {name}: mAP@50={prec * 100: 05.1f}, ' + | |
f'score={scores.mean():0.3f}, ' + | |
f'f1={2 * prec * rec / (prec + rec + 1e-8):0.3f}') | |
axs[0].plot(recall, precision, c=color) | |
axs[1].plot(recall, scores, c=color) | |
axs[0].set_title('Precision / Recall') | |
axs[0].legend(names) | |
axs[1].set_title('Scores / Recall') | |
axs[1].legend(names) | |
return fig, axs | |