AiOS / pytorch3d /.circleci /config.in.yml
ttxskk
update
d7e58f0
raw
history blame
8.57 kB
version: 2.1
#examples:
#https://github.com/facebookresearch/ParlAI/blob/master/.circleci/config.yml
#https://github.com/facebookresearch/hydra/blob/master/.circleci/config.yml
#https://github.com/facebookresearch/habitat-api/blob/master/.circleci/config.yml
#drive tests with nox or tox or pytest?
# -------------------------------------------------------------------------------------
# environments where we run our jobs
# -------------------------------------------------------------------------------------
setupcuda: &setupcuda
run:
name: Setup CUDA
working_directory: ~/
command: |
# download and install nvidia drivers, cuda, etc
wget --no-verbose --no-clobber -P ~/nvidia-downloads https://developer.download.nvidia.com/compute/cuda/11.3.1/local_installers/cuda_11.3.1_465.19.01_linux.run
sudo sh ~/nvidia-downloads/cuda_11.3.1_465.19.01_linux.run --silent
echo "Done installing CUDA."
pyenv versions
nvidia-smi
pyenv global 3.9.1
binary_common: &binary_common
parameters:
# Edit these defaults to do a release`
build_version:
description: "version number of release binary; by default, build a nightly"
type: string
default: ""
pytorch_version:
description: "PyTorch version to build against; by default, use a nightly"
type: string
default: ""
# Don't edit these
python_version:
description: "Python version to build against (e.g., 3.7)"
type: string
cu_version:
description: "CUDA version to build against, in CU format (e.g., cpu or cu100)"
type: string
wheel_docker_image:
description: "Wheel only: what docker image to use"
type: string
default: "pytorch/manylinux-cuda101"
conda_docker_image:
description: "what docker image to use for docker"
type: string
default: "pytorch/conda-cuda"
environment:
PYTHON_VERSION: << parameters.python_version >>
BUILD_VERSION: << parameters.build_version >>
PYTORCH_VERSION: << parameters.pytorch_version >>
CU_VERSION: << parameters.cu_version >>
TESTRUN_DOCKER_IMAGE: << parameters.conda_docker_image >>
jobs:
main:
environment:
CUDA_VERSION: "11.3"
resource_class: gpu.nvidia.small.multi
machine:
image: ubuntu-2004:202101-01
steps:
- checkout
- <<: *setupcuda
- run: pip3 install --progress-bar off imageio wheel matplotlib 'pillow<7'
- run: pip3 install --progress-bar off torch==1.10.0+cu113 torchvision==0.11.1+cu113 -f https://download.pytorch.org/whl/cu113/torch_stable.html
# - run: conda create -p ~/conda_env python=3.7 numpy
# - run: conda activate ~/conda_env
# - run: conda install -c pytorch pytorch torchvision
- run: pip3 install --progress-bar off 'git+https://github.com/facebookresearch/fvcore'
- run: pip3 install --progress-bar off 'git+https://github.com/facebookresearch/iopath'
- run:
name: build
command: |
export LD_LIBRARY_PATH=$LD_LIBARY_PATH:/usr/local/cuda-11.3/lib64
python3 setup.py build_ext --inplace
- run: LD_LIBRARY_PATH=$LD_LIBARY_PATH:/usr/local/cuda-11.3/lib64 python -m unittest discover -v -s tests
- run: python3 setup.py bdist_wheel
binary_linux_wheel:
<<: *binary_common
docker:
- image: << parameters.wheel_docker_image >>
auth:
username: $DOCKERHUB_USERNAME
password: $DOCKERHUB_TOKEN
resource_class: 2xlarge+
steps:
- checkout
- run: MAX_JOBS=15 packaging/build_wheel.sh
- store_artifacts:
path: dist
- persist_to_workspace:
root: dist
paths:
- "*"
binary_linux_conda:
<<: *binary_common
docker:
- image: "<< parameters.conda_docker_image >>"
auth:
username: $DOCKERHUB_USERNAME
password: $DOCKERHUB_TOKEN
resource_class: 2xlarge+
steps:
- checkout
# This is building with cuda but no gpu present,
# so we aren't running the tests.
- run:
name: build
no_output_timeout: 20m
command: MAX_JOBS=15 TEST_FLAG=--no-test packaging/build_conda.sh
- store_artifacts:
path: /opt/conda/conda-bld/linux-64
- persist_to_workspace:
root: /opt/conda/conda-bld/linux-64
paths:
- "*"
binary_linux_conda_cuda:
<<: *binary_common
machine:
image: ubuntu-1604:201903-01
resource_class: gpu.nvidia.small.multi
steps:
- checkout
- run:
name: Setup environment
command: |
set -e
curl -L https://packagecloud.io/circleci/trusty/gpgkey | sudo apt-key add -
curl -L https://dl.google.com/linux/linux_signing_key.pub | sudo apt-key add -
sudo apt-get update
sudo apt-get install \
apt-transport-https \
ca-certificates \
curl \
gnupg-agent \
software-properties-common
curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo apt-key add -
sudo add-apt-repository \
"deb [arch=amd64] https://download.docker.com/linux/ubuntu \
$(lsb_release -cs) \
stable"
sudo apt-get update
export DOCKER_VERSION="5:19.03.2~3-0~ubuntu-xenial"
sudo apt-get install docker-ce=${DOCKER_VERSION} docker-ce-cli=${DOCKER_VERSION} containerd.io=1.2.6-3
# Add the package repositories
distribution=$(. /etc/os-release;echo $ID$VERSION_ID)
curl -s -L https://nvidia.github.io/nvidia-docker/gpgkey | sudo apt-key add -
curl -s -L https://nvidia.github.io/nvidia-docker/$distribution/nvidia-docker.list | sudo tee /etc/apt/sources.list.d/nvidia-docker.list
export NVIDIA_CONTAINER_VERSION="1.0.3-1"
sudo apt-get update && sudo apt-get install -y nvidia-container-toolkit=${NVIDIA_CONTAINER_VERSION}
sudo systemctl restart docker
DRIVER_FN="NVIDIA-Linux-x86_64-460.84.run"
wget "https://us.download.nvidia.com/XFree86/Linux-x86_64/460.84/$DRIVER_FN"
sudo /bin/bash "$DRIVER_FN" -s --no-drm || (sudo cat /var/log/nvidia-installer.log && false)
nvidia-smi
- run:
name: Pull docker image
command: |
set -e
{ docker login -u="$DOCKERHUB_USERNAME" -p="$DOCKERHUB_TOKEN" ; } 2> /dev/null
echo Pulling docker image $TESTRUN_DOCKER_IMAGE
docker pull $TESTRUN_DOCKER_IMAGE
- run:
name: Build and run tests
no_output_timeout: 20m
command: |
set -e
cd ${HOME}/project/
export JUST_TESTRUN=1
VARS_TO_PASS="-e PYTHON_VERSION -e BUILD_VERSION -e PYTORCH_VERSION -e CU_VERSION -e JUST_TESTRUN"
docker run --gpus all --ipc=host -v $(pwd):/remote -w /remote ${VARS_TO_PASS} ${TESTRUN_DOCKER_IMAGE} ./packaging/build_conda.sh
binary_macos_wheel:
<<: *binary_common
macos:
xcode: "12.0"
steps:
- checkout
- run:
# Cannot easily deduplicate this as source'ing activate
# will set environment variables which we need to propagate
# to build_wheel.sh
command: |
curl -o conda.sh https://repo.anaconda.com/miniconda/Miniconda3-latest-MacOSX-x86_64.sh
sh conda.sh -b
source $HOME/miniconda3/bin/activate
packaging/build_wheel.sh
- store_artifacts:
path: dist
workflows:
version: 2
build_and_test:
jobs:
# - main:
# context: DOCKERHUB_TOKEN
{{workflows()}}
- binary_linux_conda_cuda:
name: testrun_conda_cuda_py37_cu102_pyt170
context: DOCKERHUB_TOKEN
python_version: "3.7"
pytorch_version: '1.7.0'
cu_version: "cu102"
- binary_macos_wheel:
cu_version: cpu
name: macos_wheel_py36_cpu
python_version: '3.6'
pytorch_version: '1.9.0'
- binary_macos_wheel:
cu_version: cpu
name: macos_wheel_py37_cpu
python_version: '3.7'
pytorch_version: '1.9.0'
- binary_macos_wheel:
cu_version: cpu
name: macos_wheel_py38_cpu
python_version: '3.8'
pytorch_version: '1.9.0'
- binary_macos_wheel:
cu_version: cpu
name: macos_wheel_py39_cpu
python_version: '3.9'
pytorch_version: '1.9.0'