Spaces:
Running
on
L40S
Running
on
L40S
# Copyright (c) OpenMMLab. All rights reserved. | |
import numpy as np | |
import pytest | |
import torch | |
from mmcv.utils import IS_CUDA_AVAILABLE, IS_MLU_AVAILABLE | |
_USING_PARROTS = True | |
try: | |
from parrots.autograd import gradcheck | |
except ImportError: | |
from torch.autograd import gradcheck | |
_USING_PARROTS = False | |
# yapf:disable | |
inputs = [([[[[1., 2.], [3., 4.]]]], | |
[[0., 0., 0., 1., 1.]]), | |
([[[[1., 2.], [3., 4.]], | |
[[4., 3.], [2., 1.]]]], | |
[[0., 0., 0., 1., 1.]]), | |
([[[[1., 2., 5., 6.], [3., 4., 7., 8.], | |
[9., 10., 13., 14.], [11., 12., 15., 16.]]]], | |
[[0., 0., 0., 3., 3.]])] | |
outputs = [([[[[1.0, 1.25], [1.5, 1.75]]]], | |
[[[[3.0625, 0.4375], [0.4375, 0.0625]]]]), | |
([[[[1.0, 1.25], [1.5, 1.75]], | |
[[4.0, 3.75], [3.5, 3.25]]]], | |
[[[[3.0625, 0.4375], [0.4375, 0.0625]], | |
[[3.0625, 0.4375], [0.4375, 0.0625]]]]), | |
([[[[1.9375, 4.75], [7.5625, 10.375]]]], | |
[[[[0.47265625, 0.42968750, 0.42968750, 0.04296875], | |
[0.42968750, 0.39062500, 0.39062500, 0.03906250], | |
[0.42968750, 0.39062500, 0.39062500, 0.03906250], | |
[0.04296875, 0.03906250, 0.03906250, 0.00390625]]]])] | |
# yapf:enable | |
pool_h = 2 | |
pool_w = 2 | |
spatial_scale = 1.0 | |
sampling_ratio = 2 | |
def _test_roialign_gradcheck(device, dtype): | |
try: | |
from mmcv.ops import RoIAlign | |
except ModuleNotFoundError: | |
pytest.skip('RoIAlign op is not successfully compiled') | |
if dtype is torch.half: | |
pytest.skip('grad check does not support fp16') | |
for case in inputs: | |
np_input = np.array(case[0]) | |
np_rois = np.array(case[1]) | |
x = torch.tensor( | |
np_input, dtype=dtype, device=device, requires_grad=True) | |
rois = torch.tensor(np_rois, dtype=dtype, device=device) | |
froipool = RoIAlign((pool_h, pool_w), spatial_scale, sampling_ratio) | |
if torch.__version__ == 'parrots': | |
gradcheck( | |
froipool, (x, rois), no_grads=[rois], delta=1e-5, pt_atol=1e-5) | |
else: | |
gradcheck(froipool, (x, rois), eps=1e-5, atol=1e-5) | |
def _test_roialign_allclose(device, dtype): | |
try: | |
from mmcv.ops import roi_align | |
except ModuleNotFoundError: | |
pytest.skip('test requires compilation') | |
pool_h = 2 | |
pool_w = 2 | |
spatial_scale = 1.0 | |
sampling_ratio = 2 | |
for case, output in zip(inputs, outputs): | |
np_input = np.array(case[0]) | |
np_rois = np.array(case[1]) | |
np_output = np.array(output[0]) | |
np_grad = np.array(output[1]) | |
x = torch.tensor( | |
np_input, dtype=dtype, device=device, requires_grad=True) | |
rois = torch.tensor(np_rois, dtype=dtype, device=device) | |
output = roi_align(x, rois, (pool_h, pool_w), spatial_scale, | |
sampling_ratio, 'avg', True) | |
output.backward(torch.ones_like(output)) | |
assert np.allclose( | |
output.data.type(torch.float).cpu().numpy(), np_output, atol=1e-3) | |
assert np.allclose( | |
x.grad.data.type(torch.float).cpu().numpy(), np_grad, atol=1e-3) | |
def test_roialign(device, dtype): | |
# check double only | |
if dtype is torch.double: | |
_test_roialign_gradcheck(device=device, dtype=dtype) | |
_test_roialign_allclose(device=device, dtype=dtype) | |