Spaces:
Running
on
L40S
Running
on
L40S
# Copyright (c) OpenMMLab. All rights reserved. | |
import pytest | |
import torch | |
from mmcv.ops import furthest_point_sample, furthest_point_sample_with_dist | |
def test_fps(): | |
xyz = torch.tensor([[[-0.2748, 1.0020, -1.1674], [0.1015, 1.3952, -1.2681], | |
[-0.8070, 2.4137, | |
-0.5845], [-1.0001, 2.1982, -0.5859], | |
[0.3841, 1.8983, -0.7431]], | |
[[-1.0696, 3.0758, | |
-0.1899], [-0.2559, 3.5521, -0.1402], | |
[0.8164, 4.0081, -0.1839], [-1.1000, 3.0213, -0.8205], | |
[-0.0518, 3.7251, -0.3950]]]).cuda() | |
idx = furthest_point_sample(xyz, 3) | |
expected_idx = torch.tensor([[0, 2, 4], [0, 2, 1]]).cuda() | |
assert torch.all(idx == expected_idx) | |
def test_fps_with_dist(): | |
xyz = torch.tensor([[[-0.2748, 1.0020, -1.1674], [0.1015, 1.3952, -1.2681], | |
[-0.8070, 2.4137, | |
-0.5845], [-1.0001, 2.1982, -0.5859], | |
[0.3841, 1.8983, -0.7431]], | |
[[-1.0696, 3.0758, | |
-0.1899], [-0.2559, 3.5521, -0.1402], | |
[0.8164, 4.0081, -0.1839], [-1.1000, 3.0213, -0.8205], | |
[-0.0518, 3.7251, -0.3950]]]).cuda() | |
expected_idx = torch.tensor([[0, 2, 4], [0, 2, 1]]).cuda() | |
xyz_square_dist = ((xyz.unsqueeze(dim=1) - | |
xyz.unsqueeze(dim=2))**2).sum(-1) | |
idx = furthest_point_sample_with_dist(xyz_square_dist, 3) | |
assert torch.all(idx == expected_idx) | |
import numpy as np | |
fps_idx = np.load('tests/data/for_3d_ops/fps_idx.npy') | |
features_for_fps_distance = np.load( | |
'tests/data/for_3d_ops/features_for_fps_distance.npy') | |
expected_idx = torch.from_numpy(fps_idx).cuda() | |
features_for_fps_distance = torch.from_numpy( | |
features_for_fps_distance).cuda() | |
idx = furthest_point_sample_with_dist(features_for_fps_distance, 16) | |
assert torch.all(idx == expected_idx) | |