Spaces:
Running
on
L40S
Running
on
L40S
# Copyright (c) OpenMMLab. All rights reserved. | |
import numpy as np | |
import pytest | |
import torch | |
from mmcv.ops import convex_giou, convex_iou | |
np_pointsets = np.asarray([[ | |
1.0, 1.0, 2.0, 2.0, 1.0, 2.0, 2.0, 1.0, 1.0, 3.0, 3.0, 1.0, 2.0, 3.0, 3.0, | |
2.0, 1.5, 1.5 | |
], | |
[ | |
1.5, 1.5, 2.5, 2.5, 1.5, 2.5, 2.5, 1.5, 1.5, | |
3.5, 3.5, 1.5, 2.5, 3.5, 3.5, 2.5, 2.0, 2.0 | |
]]) | |
np_polygons = np.asarray([[1.0, 1.0, 1.0, 2.0, 2.0, 2.0, 2.0, 1.0], | |
[1.0, 1.0, 1.0, 3.0, 3.0, 3.0, 3.0, 1.0]]) | |
np_expected_iou = np.asarray([[0.2857, 0.8750], [0.0588, 0.4286]]) | |
np_expected_giou = np.asarray([0.2857, 0.3831]) | |
np_expected_grad = np.asarray([[ | |
0.0204, 0.0408, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0612, | |
-0.0408, -0.0408, 0.0816, -0.0408, -0.0816, -0.0816, -0.0408, 0.0000, | |
0.0000 | |
], | |
[ | |
-0.1848, -0.1848, 0.0000, 0.0000, 0.0000, | |
0.0000, 0.0000, 0.0000, -0.1076, -0.0801, | |
-0.0801, -0.1076, -0.0367, -0.0734, -0.0734, | |
-0.0367, 0.0000, 0.0000 | |
]]) | |
def test_convex_iou(): | |
pointsets = torch.from_numpy(np_pointsets).cuda().float() | |
polygons = torch.from_numpy(np_polygons).cuda().float() | |
expected_iou = torch.from_numpy(np_expected_iou).cuda().float() | |
assert torch.allclose( | |
convex_iou(pointsets, polygons), expected_iou, atol=1e-3) | |
def test_convex_giou(): | |
pointsets = torch.from_numpy(np_pointsets).cuda().float() | |
polygons = torch.from_numpy(np_polygons).cuda().float() | |
expected_giou = torch.from_numpy(np_expected_giou).cuda().float() | |
expected_grad = torch.from_numpy(np_expected_grad).cuda().float() | |
giou, grad = convex_giou(pointsets, polygons) | |
assert torch.allclose(giou, expected_giou, atol=1e-3) | |
assert torch.allclose(grad, expected_grad, atol=1e-3) | |