AiOS / mmcv /.dev_scripts /visualize_lr.py
ttxskk
update
d7e58f0
raw
history blame
7.64 kB
import argparse
import json
import os
import os.path as osp
import time
import warnings
from collections import OrderedDict
from unittest.mock import patch
import matplotlib.pyplot as plt
import numpy as np
import torch.nn as nn
from torch.optim import SGD
from torch.utils.data import DataLoader
import mmcv
from mmcv.runner import build_runner
from mmcv.utils import get_logger
def parse_args():
parser = argparse.ArgumentParser(description='Visualize the given config'
'of learning rate and momentum, and this'
'script will overwrite the log_config')
parser.add_argument('config', help='train config file path')
parser.add_argument(
'--work-dir', default='./', help='the dir to save logs and models')
parser.add_argument(
'--num-iters', default=300, help='The number of iters per epoch')
parser.add_argument(
'--num-epochs', default=300, help='Only used in EpochBasedRunner')
parser.add_argument(
'--window-size',
default='12*14',
help='Size of the window to display images, in format of "$W*$H".')
parser.add_argument(
'--log-interval', default=10, help='The interval of TextLoggerHook')
args = parser.parse_args()
return args
class SimpleModel(nn.Module):
def __init__(self):
super().__init__()
self.conv = nn.Conv2d(1, 1, 1)
def train_step(self, *args, **kwargs):
return dict()
def val_step(self, *args, **kwargs):
return dict()
def iter_train(self, data_loader, **kwargs):
self.mode = 'train'
self.data_loader = data_loader
self.call_hook('before_train_iter')
self.call_hook('after_train_iter')
self._inner_iter += 1
self._iter += 1
def epoch_train(self, data_loader, **kwargs):
self.model.train()
self.mode = 'train'
self.data_loader = data_loader
self._max_iters = self._max_epochs * len(self.data_loader)
self.call_hook('before_train_epoch')
for i, data_batch in enumerate(self.data_loader):
self._inner_iter = i
self.call_hook('before_train_iter')
self.call_hook('after_train_iter')
self._iter += 1
self.call_hook('after_train_epoch')
self._epoch += 1
def log(self, runner):
cur_iter = self.get_iter(runner, inner_iter=True)
log_dict = OrderedDict(
mode=self.get_mode(runner),
epoch=self.get_epoch(runner),
iter=cur_iter)
# only record lr of the first param group
cur_lr = runner.current_lr()
if isinstance(cur_lr, list):
log_dict['lr'] = cur_lr[0]
else:
assert isinstance(cur_lr, dict)
log_dict['lr'] = {}
for k, lr_ in cur_lr.items():
assert isinstance(lr_, list)
log_dict['lr'].update({k: lr_[0]})
cur_momentum = runner.current_momentum()
if isinstance(cur_momentum, list):
log_dict['momentum'] = cur_momentum[0]
else:
assert isinstance(cur_momentum, dict)
log_dict['momentum'] = {}
for k, lr_ in cur_momentum.items():
assert isinstance(lr_, list)
log_dict['momentum'].update({k: lr_[0]})
log_dict = dict(log_dict, **runner.log_buffer.output)
self._log_info(log_dict, runner)
self._dump_log(log_dict, runner)
return log_dict
@patch('torch.cuda.is_available', lambda: False)
@patch('mmcv.runner.EpochBasedRunner.train', epoch_train)
@patch('mmcv.runner.IterBasedRunner.train', iter_train)
@patch('mmcv.runner.hooks.TextLoggerHook.log', log)
def run(cfg, logger):
momentum_config = cfg.get('momentum_config')
lr_config = cfg.get('lr_config')
model = SimpleModel()
optimizer = SGD(model.parameters(), 0.1, momentum=0.8)
cfg.work_dir = cfg.get('work_dir', './')
workflow = [('train', 1)]
if cfg.get('runner') is None:
cfg.runner = {
'type': 'EpochBasedRunner',
'max_epochs': cfg.get('total_epochs', cfg.num_epochs)
}
warnings.warn(
'config is now expected to have a `runner` section, '
'please set `runner` in your config.', UserWarning)
batch_size = 1
data = cfg.get('data')
if data:
batch_size = data.get('samples_per_gpu')
fake_dataloader = DataLoader(
list(range(cfg.num_iters)), batch_size=batch_size)
runner = build_runner(
cfg.runner,
default_args=dict(
model=model,
batch_processor=None,
optimizer=optimizer,
work_dir=cfg.work_dir,
logger=logger,
meta=None))
log_config = dict(
interval=cfg.log_interval, hooks=[
dict(type='TextLoggerHook'),
])
runner.register_training_hooks(lr_config, log_config=log_config)
runner.register_momentum_hook(momentum_config)
runner.run([fake_dataloader], workflow)
def plot_lr_curve(json_file, cfg):
data_dict = dict(LearningRate=[], Momentum=[])
assert os.path.isfile(json_file)
with open(json_file) as f:
for line in f:
log = json.loads(line.strip())
data_dict['LearningRate'].append(log['lr'])
data_dict['Momentum'].append(log['momentum'])
wind_w, wind_h = (int(size) for size in cfg.window_size.split('*'))
# if legend is None, use {filename}_{key} as legend
fig, axes = plt.subplots(2, 1, figsize=(wind_w, wind_h))
plt.subplots_adjust(hspace=0.5)
font_size = 20
for index, (updater_type, data_list) in enumerate(data_dict.items()):
ax = axes[index]
if cfg.runner.type == 'EpochBasedRunner':
ax.plot(data_list, linewidth=1)
ax.xaxis.tick_top()
ax.set_xlabel('Iters', fontsize=font_size)
ax.xaxis.set_label_position('top')
sec_ax = ax.secondary_xaxis(
'bottom',
functions=(lambda x: x / cfg.num_iters * cfg.log_interval,
lambda y: y * cfg.num_iters / cfg.log_interval))
sec_ax.tick_params(labelsize=font_size)
sec_ax.set_xlabel('Epochs', fontsize=font_size)
else:
# plt.subplot(2, 1, index + 1)
x_list = np.arange(len(data_list)) * cfg.log_interval
ax.plot(x_list, data_list)
ax.set_xlabel('Iters', fontsize=font_size)
ax.set_ylabel(updater_type, fontsize=font_size)
if updater_type == 'LearningRate':
if cfg.get('lr_config'):
title = cfg.lr_config.type
else:
title = 'No learning rate scheduler'
else:
if cfg.get('momentum_config'):
title = cfg.momentum_config.type
else:
title = 'No momentum scheduler'
ax.set_title(title, fontsize=font_size)
ax.grid()
# set tick font size
ax.tick_params(labelsize=font_size)
save_path = osp.join(cfg.work_dir, 'visualization-result')
plt.savefig(save_path)
print(f'The learning rate graph is saved at {save_path}.png')
plt.show()
def main():
args = parse_args()
timestamp = time.strftime('%Y%m%d_%H%M%S', time.localtime())
cfg = mmcv.Config.fromfile(args.config)
cfg['num_iters'] = args.num_iters
cfg['num_epochs'] = args.num_epochs
cfg['log_interval'] = args.log_interval
cfg['window_size'] = args.window_size
log_path = osp.join(cfg.get('work_dir', './'), f'{timestamp}.log')
json_path = log_path + '.json'
logger = get_logger('mmcv', log_path)
run(cfg, logger)
plot_lr_curve(json_path, cfg)
if __name__ == '__main__':
main()