AiOS / datasets /INFERENCE_demo.py
ttxskk
update
d7e58f0
raw
history blame
7.14 kB
import os
import os.path as osp
from glob import glob
import numpy as np
from config.config import cfg
import copy
import json
import pickle
import cv2
import torch
from pycocotools.coco import COCO
from util.human_models import smpl_x
from util.preprocessing import load_img, sanitize_bbox, process_bbox,augmentation_keep_size, load_ply, load_obj
from util.transforms import rigid_align, rigid_align_batch
import tqdm
import random
from util.formatting import DefaultFormatBundle
from detrsmpl.data.datasets.pipelines.transforms import Normalize
from humandata import HumanDataset
from detrsmpl.utils.demo_utils import xywh2xyxy, xyxy2xywh, box2cs
from detrsmpl.core.conventions.keypoints_mapping import convert_kps
import mmcv
import cv2
import numpy as np
from detrsmpl.core.visualization.visualize_keypoints2d import visualize_kp2d
from detrsmpl.core.visualization.visualize_smpl import visualize_smpl_hmr,render_smpl
from detrsmpl.models.body_models.builder import build_body_model
from detrsmpl.core.visualization.visualize_keypoints3d import visualize_kp3d
from detrsmpl.data.data_structures.multi_human_data import MultiHumanData
from detrsmpl.utils.ffmpeg_utils import video_to_images
from mmcv.runner import get_dist_info
from config.config import cfg
import torch.distributed as dist
import shutil
import re
from pytorch3d.io import save_obj
class INFERENCE_demo(torch.utils.data.Dataset):
def __init__(self, img_dir=None,out_path=None):
self.output_path = out_path
self.mesh_path = os.path.join(self.output_path, 'mesh')
self.img_dir = img_dir
self.is_vid = True
body_model_cfg = dict(
type='smplx',
keypoint_src='smplx',
num_expression_coeffs=10,
num_betas=10,
gender='neutral',
keypoint_dst='smplx_137',
model_path='data/body_models/smplx',
use_pca=False,
use_face_contour=True)
self.body_model = build_body_model(body_model_cfg).to('cuda')
os.makedirs(self.output_path, exist_ok=True)
self.tmp_dir = os.path.join(self.output_path, 'temp_img')
os.makedirs(self.tmp_dir, exist_ok=True)
self.result_img_dir = os.path.join(self.output_path, 'res_img')
video_to_images(self.img_dir, self.tmp_dir)
self.img_paths = sorted(glob(self.tmp_dir+'/*',recursive=True))
self.num_person = cfg.num_person if 'num_person' in cfg else 0.1
self.score_threshold = cfg.threshold if 'threshold' in cfg else 0.1
self.format = DefaultFormatBundle()
self.normalize = Normalize(mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375])
def __len__(self):
return len(self.img_paths)
def __getitem__(self, idx):
img = load_img(self.img_paths[idx],'BGR')
self.resolution = img.shape[:2]
img_whole_bbox = np.array([0, 0, img.shape[1],img.shape[0]])
img, img2bb_trans, bb2img_trans, _, _ = \
augmentation_keep_size(img, img_whole_bbox, 'test')
# cropped_img_shape=img.shape[:2]
img = (img.astype(np.float32))
inputs = {'img': img}
targets = {
'body_bbox_center': np.array(img_whole_bbox[None]),
'body_bbox_size': np.array(img_whole_bbox[None])}
meta_info = {
'ori_shape':np.array(self.resolution),
'img_shape': np.array(img.shape[:2]),
'img2bb_trans': img2bb_trans,
'bb2img_trans': bb2img_trans,
'ann_idx': idx}
result = {**inputs, **targets, **meta_info}
result = self.normalize(result)
result = self.format(result)
return result
def inference(self, outs):
img_paths = self.img_paths
for out in outs:
ann_idx = out['image_idx']
# img_cropped = mmcv.imdenormalize(
# img=(out['img'].cpu().numpy()).transpose(1, 2, 0),
# mean=np.array([123.675, 116.28, 103.53]),
# std=np.array([58.395, 57.12, 57.375]),
# to_bgr=True).astype(np.uint8)
# bb2img_trans = out['bb2img_trans']
# img2bb_trans = out['img2bb_trans']
scores = out['scores'].clone().cpu().numpy()
img_shape = out['img_shape'].cpu().numpy()[::-1] # w, h
img = cv2.imread(img_paths[ann_idx]) # h, w
scale = img.shape[1]/img_shape[0]
body_bbox = out['body_bbox'].clone().cpu().numpy()
body_bbox = body_bbox * scale
joint_3d, _ = convert_kps(out['smpl_kp3d'].clone().cpu().numpy(),src='smplx',dst='smplx', approximate=True)
for i, score in enumerate(scores):
if score < self.score_threshold:
break
if i>self.num_person:
break
save_name = img_paths[ann_idx].split('/')[-1]
save_name = save_name.split('.')[0]
vert = out['smpl_verts'][i] + out['cam_trans'][i][None]
# save mesh
exist_result_path = glob(osp.join(self.mesh_path, save_name + '*'))
if len(exist_result_path) == 0:
person_idx = 0
else:
last_person_idx = max([
int(name.split('personId_')[1].split('.obj')[0])
for name in exist_result_path
])
person_idx = last_person_idx + 1
save_name += '_personId_' + str(person_idx) + '.obj'
os.makedirs(self.mesh_path, exist_ok=True)
save_obj(osp.join(self.mesh_path, save_name), vert, faces=torch.tensor(self.body_model.faces.astype(np.int32)))
if i == 0:
save_name = img_paths[ann_idx].split('/')[-1][:-4]
cv2.imwrite(os.path.join(self.result_img_dir,img_paths[ann_idx].split('/')[-1]), img)
else:
verts = out['smpl_verts'][:i] + out['cam_trans'][:i][:, None]
img = mmcv.imshow_bboxes(img, body_bbox[:i], show=False, colors='green')
render_smpl(
verts=verts[None],
body_model=self.body_model,
K= np.array(
[[5000, 0, img_shape[0]/2],
[0, 5000, img_shape[1]/2],
[0, 0, 1]]),
R=None,
T=None,
output_path=os.path.join(self.result_img_dir,img_paths[ann_idx].split('/')[-1]),
image_array=cv2.resize(img, (img_shape[0],img_shape[1]), cv2.INTER_CUBIC),
in_ndc=False,
alpha=0.9,
convention='opencv',
projection='perspective',
overwrite=True,
no_grad=True,
device='cuda',
resolution=[img_shape[1],img_shape[0]],
render_choice='hq'
)
return None