Spaces:
Running
on
L40S
Running
on
L40S
# Copyright (c) OpenMMLab. All rights reserved. | |
""" | |
CommandLine: | |
pytest tests/test_merge_cells.py | |
""" | |
import math | |
import pytest | |
import torch | |
import torch.nn.functional as F | |
from mmcv.ops.merge_cells import (BaseMergeCell, ConcatCell, GlobalPoolingCell, | |
SumCell) | |
# All size (14, 7) below is to test the situation that | |
# the input size can't be divisible by the target size. | |
def test_sum_cell(inputs_x, inputs_y): | |
sum_cell = SumCell(256, 256) | |
output = sum_cell(inputs_x, inputs_y, out_size=inputs_x.shape[-2:]) | |
assert output.size() == inputs_x.size() | |
output = sum_cell(inputs_x, inputs_y, out_size=inputs_y.shape[-2:]) | |
assert output.size() == inputs_y.size() | |
output = sum_cell(inputs_x, inputs_y) | |
assert output.size() == inputs_y.size() | |
def test_concat_cell(inputs_x, inputs_y): | |
concat_cell = ConcatCell(256, 256) | |
output = concat_cell(inputs_x, inputs_y, out_size=inputs_x.shape[-2:]) | |
assert output.size() == inputs_x.size() | |
output = concat_cell(inputs_x, inputs_y, out_size=inputs_y.shape[-2:]) | |
assert output.size() == inputs_y.size() | |
output = concat_cell(inputs_x, inputs_y) | |
assert output.size() == inputs_y.size() | |
def test_global_pool_cell(inputs_x, inputs_y): | |
gp_cell = GlobalPoolingCell(with_out_conv=False) | |
gp_cell_out = gp_cell(inputs_x, inputs_y, out_size=inputs_x.shape[-2:]) | |
assert (gp_cell_out.size() == inputs_x.size()) | |
gp_cell = GlobalPoolingCell(256, 256) | |
gp_cell_out = gp_cell(inputs_x, inputs_y, out_size=inputs_x.shape[-2:]) | |
assert (gp_cell_out.size() == inputs_x.size()) | |
def test_resize_methods(target_size): | |
inputs_x = torch.randn([2, 256, 128, 128]) | |
h, w = inputs_x.shape[-2:] | |
target_h, target_w = target_size | |
if (h <= target_h) or w <= target_w: | |
rs_mode = 'upsample' | |
else: | |
rs_mode = 'downsample' | |
if rs_mode == 'upsample': | |
upsample_methods_list = ['nearest', 'bilinear'] | |
for method in upsample_methods_list: | |
merge_cell = BaseMergeCell(upsample_mode=method) | |
merge_cell_out = merge_cell._resize(inputs_x, target_size) | |
gt_out = F.interpolate(inputs_x, size=target_size, mode=method) | |
assert merge_cell_out.equal(gt_out) | |
elif rs_mode == 'downsample': | |
merge_cell = BaseMergeCell() | |
merge_cell_out = merge_cell._resize(inputs_x, target_size) | |
if h % target_h != 0 or w % target_w != 0: | |
pad_h = math.ceil(h / target_h) * target_h - h | |
pad_w = math.ceil(w / target_w) * target_w - w | |
pad_l = pad_w // 2 | |
pad_r = pad_w - pad_l | |
pad_t = pad_h // 2 | |
pad_b = pad_h - pad_t | |
pad = (pad_l, pad_r, pad_t, pad_b) | |
inputs_x = F.pad(inputs_x, pad, mode='constant', value=0.0) | |
kernel_size = (inputs_x.shape[-2] // target_h, | |
inputs_x.shape[-1] // target_w) | |
gt_out = F.max_pool2d( | |
inputs_x, kernel_size=kernel_size, stride=kernel_size) | |
print(merge_cell_out.shape, gt_out.shape) | |
assert (merge_cell_out == gt_out).all() | |
assert merge_cell_out.shape[-2:] == target_size | |