AiOS / mmcv /tests /test_ops /test_correlation.py
ttxskk
update
d7e58f0
raw
history blame
1.5 kB
# Copyright (c) OpenMMLab. All rights reserved.
import pytest
import torch
from mmcv.ops import Correlation
_input1 = [[[[1., 2., 3.], [0., 1., 2.], [3., 5., 2.]]]]
_input2 = [[[[1., 2., 3.], [3., 1., 2.], [8., 5., 2.]]]]
gt_out_shape = (1, 1, 1, 3, 3)
_gt_out = [[[[[1., 4., 9.], [0., 1., 4.], [24., 25., 4.]]]]]
gt_input1_grad = [[[[1., 2., 3.], [3., 1., 2.], [8., 5., 2.]]]]
def assert_equal_tensor(tensor_a, tensor_b):
assert tensor_a.eq(tensor_b).all()
class TestCorrelation:
def _test_correlation(self, dtype=torch.float):
layer = Correlation(max_displacement=0)
input1 = torch.tensor(_input1, dtype=dtype).cuda()
input2 = torch.tensor(_input2, dtype=dtype).cuda()
input1.requires_grad = True
input2.requires_grad = True
out = layer(input1, input2)
out.backward(torch.ones_like(out))
# `eq_cpu` is not implemented for 'Half' in torch1.5.0,
# so we need to make a comparison for cuda tensor
# rather than cpu tensor
gt_out = torch.tensor(_gt_out, dtype=dtype).cuda()
assert_equal_tensor(out, gt_out)
assert_equal_tensor(input1.grad.detach(), input2)
assert_equal_tensor(input2.grad.detach(), input1)
@pytest.mark.skipif(
not torch.cuda.is_available(), reason='requires CUDA support')
def test_correlation(self):
self._test_correlation(torch.float)
self._test_correlation(torch.double)
self._test_correlation(torch.half)