Spaces:
Sleeping
Sleeping
import random | |
import warnings | |
import numpy as np | |
import torch | |
from mmcv.parallel import MMDataParallel, MMDistributedDataParallel | |
from mmcv.runner import ( | |
DistSamplerSeedHook, | |
Fp16OptimizerHook, | |
OptimizerHook, | |
build_runner, | |
) | |
from detrsmpl.core.distributed_wrapper import DistributedDataParallelWrapper | |
from detrsmpl.core.evaluation import DistEvalHook, EvalHook | |
from detrsmpl.core.optimizer import build_optimizers | |
from detrsmpl.data.datasets import build_dataloader, build_dataset | |
from detrsmpl.utils.logger import get_root_logger | |
def set_random_seed(seed, deterministic=False): | |
"""Set random seed. | |
Args: | |
seed (int): Seed to be used. | |
deterministic (bool): Whether to set the deterministic option for | |
CUDNN backend, i.e., set `torch.backends.cudnn.deterministic` | |
to True and `torch.backends.cudnn.benchmark` to False. | |
Default: False. | |
""" | |
random.seed(seed) | |
np.random.seed(seed) | |
torch.manual_seed(seed) | |
torch.cuda.manual_seed_all(seed) | |
if deterministic: | |
torch.backends.cudnn.deterministic = True | |
torch.backends.cudnn.benchmark = False | |
def train_model(model, | |
dataset, | |
cfg, | |
distributed=False, | |
validate=False, | |
timestamp=None, | |
device='cuda', | |
meta=None): | |
"""Main api for training model.""" | |
logger = get_root_logger(cfg.log_level) | |
# prepare data loaders | |
dataset = dataset if isinstance(dataset, (list, tuple)) else [dataset] | |
data_loaders = [ | |
build_dataloader( | |
ds, | |
cfg.data.samples_per_gpu, | |
cfg.data.workers_per_gpu, | |
# cfg.gpus will be ignored if distributed | |
num_gpus=len(cfg.gpu_ids), | |
dist=distributed, | |
round_up=True, | |
seed=cfg.seed) for ds in dataset | |
] | |
# determine whether use adversarial training precess or not | |
use_adverserial_train = cfg.get('use_adversarial_train', False) | |
# put model on gpus | |
if distributed: | |
find_unused_parameters = cfg.get('find_unused_parameters', False) | |
# Sets the `find_unused_parameters` parameter in | |
# torch.nn.parallel.DistributedDataParallel | |
if use_adverserial_train: | |
# Use DistributedDataParallelWrapper for adversarial training | |
model = DistributedDataParallelWrapper( | |
model, | |
device_ids=[torch.cuda.current_device()], | |
broadcast_buffers=False, | |
find_unused_parameters=find_unused_parameters) | |
else: | |
model = MMDistributedDataParallel( | |
model.cuda(), | |
device_ids=[torch.cuda.current_device()], | |
broadcast_buffers=False, | |
find_unused_parameters=find_unused_parameters) | |
else: | |
if device == 'cuda': | |
model = MMDataParallel(model.cuda(cfg.gpu_ids[0]), | |
device_ids=cfg.gpu_ids) | |
elif device == 'cpu': | |
model = model.cpu() | |
else: | |
raise ValueError(F'unsupported device name {device}.') | |
# build runner | |
optimizer = build_optimizers(model, cfg.optimizer) | |
if cfg.get('runner') is None: | |
cfg.runner = { | |
'type': 'EpochBasedRunner', | |
'max_epochs': cfg.total_epochs | |
} | |
warnings.warn( | |
'config is now expected to have a `runner` section, ' | |
'please set `runner` in your config.', UserWarning) | |
runner = build_runner(cfg.runner, | |
default_args=dict(model=model, | |
batch_processor=None, | |
optimizer=optimizer, | |
work_dir=cfg.work_dir, | |
logger=logger, | |
meta=meta)) | |
# an ugly walkaround to make the .log and .log.json filenames the same | |
runner.timestamp = timestamp | |
if use_adverserial_train: | |
# The optimizer step process is included in the train_step function | |
# of the model, so the runner should NOT include optimizer hook. | |
optimizer_config = None | |
else: | |
# fp16 setting | |
fp16_cfg = cfg.get('fp16', None) | |
if fp16_cfg is not None: | |
optimizer_config = Fp16OptimizerHook(**cfg.optimizer_config, | |
**fp16_cfg, | |
distributed=distributed) | |
elif distributed and 'type' not in cfg.optimizer_config: | |
optimizer_config = OptimizerHook(**cfg.optimizer_config) | |
else: | |
optimizer_config = cfg.optimizer_config | |
# register hooks | |
runner.register_training_hooks(cfg.lr_config, | |
optimizer_config, | |
cfg.checkpoint_config, | |
cfg.log_config, | |
cfg.get('momentum_config', None), | |
custom_hooks_config=cfg.get( | |
'custom_hooks', None)) | |
if distributed: | |
runner.register_hook(DistSamplerSeedHook()) | |
# register eval hooks | |
if validate: | |
val_dataset = build_dataset(cfg.data.val, dict(test_mode=True)) | |
val_dataloader = build_dataloader( | |
val_dataset, | |
samples_per_gpu=cfg.data.samples_per_gpu, | |
workers_per_gpu=cfg.data.workers_per_gpu, | |
dist=distributed, | |
shuffle=False, | |
round_up=True) | |
eval_cfg = cfg.get('evaluation', {}) | |
eval_cfg['by_epoch'] = cfg.runner['type'] != 'IterBasedRunner' | |
eval_hook = DistEvalHook if distributed else EvalHook | |
runner.register_hook(eval_hook(val_dataloader, **eval_cfg)) | |
if cfg.resume_from: | |
runner.resume(cfg.resume_from) | |
elif cfg.load_from: | |
runner.load_checkpoint(cfg.load_from) | |
runner.run(data_loaders, cfg.workflow) | |