AiOS / datasets /EgoBody_Egocentric.py
ttxskk
update
d7e58f0
raw
history blame
9.42 kB
import os
import os.path as osp
import numpy as np
import torch
import cv2
import json
import copy
import csv
from pycocotools.coco import COCO
from config.config import cfg
from util.human_models import smpl_x
from util.transforms import world2cam, cam2pixel, rigid_align
from humandata import HumanDataset
from util.transforms import rigid_align, rigid_align_batch
class EgoBody_Egocentric(HumanDataset):
def __init__(self, transform, data_split):
super(EgoBody_Egocentric, self).__init__(transform, data_split)
if self.data_split == 'train':
filename = 'data/preprocessed_npz/multihuman_data/egobody_egocentric_train_multi_080824.npz'
self.annot_path_cache = 'data/preprocessed_npz/cache/egobody_egocentric_train_cache_080824.npz'
self.sample_interval = 5
else:
filename = 'data/preprocessed_npz/multihuman_data/egobody_egocentric_val_multi_080824.npz'
self.annot_path_cache = 'data/preprocessed_npz/cache/egobody_egocentric_val_cache_080824.npz'
self.sample_interval = 1
self.use_betas_neutral = getattr(cfg, 'egobody_fix_betas', False)
self.img_dir = 'data/osx_data/EgoBody'
self.annot_path = filename
self.use_cache = getattr(cfg, 'use_cache', False)
self.img_shape = (1080, 1920) # (h, w)
self.cam_param = {}
# check image shape
img_path = osp.join(self.img_dir,
np.load(self.annot_path)['image_path'][0])
img_shape = cv2.imread(img_path).shape[:2]
assert self.img_shape == img_shape, 'image shape is incorrect: {} vs {}'.format(
self.img_shape, img_shape)
# load data or cache
if self.use_cache and osp.isfile(self.annot_path_cache):
print(
f'[{self.__class__.__name__}] loading cache from {self.annot_path_cache}'
)
self.datalist = self.load_cache(self.annot_path_cache)
else:
if self.use_cache:
print(
f'[{self.__class__.__name__}] Cache not found, generating cache...'
)
self.datalist = self.load_data(train_sample_interval=getattr(
cfg, f'{self.__class__.__name__}_train_sample_interval', self.sample_interval))
if self.use_cache:
self.save_cache(self.annot_path_cache, self.datalist)
def evaluate(self, outs, cur_sample_idx):
annots = self.datalist
sample_num = len(outs)
eval_result = {
'pa_mpvpe_all': [],
'pa_mpvpe_l_hand': [],
'pa_mpvpe_r_hand': [],
'pa_mpvpe_hand': [],
'pa_mpvpe_face': [],
'mpvpe_all': [],
'mpvpe_l_hand': [],
'mpvpe_r_hand': [],
'mpvpe_hand': [],
'mpvpe_face': []
}
vis = getattr(cfg, 'vis', False)
vis_save_dir = cfg.vis_dir
csv_file = f'{cfg.result_dir}/egobody_smplx_error.csv'
file = open(csv_file, 'a', newline='')
for n in range(sample_num):
annot = annots[cur_sample_idx + n]
out = outs[n]
mesh_gt = out['smplx_mesh_cam_target']
mesh_out = out['smplx_mesh_cam']
ann_idx = out['gt_ann_idx']
img_path = []
for ann_id in ann_idx:
img_path.append(annots[ann_id]['img_path'])
eval_result['img_path'] = img_path
eval_result['ann_idx'] = ann_idx
# MPVPE from all vertices
mesh_out_align = \
mesh_out - np.dot(
smpl_x.J_regressor, mesh_out).transpose(1,0,2)[:, smpl_x.J_regressor_idx['pelvis'], None, :] + \
np.dot(smpl_x.J_regressor, mesh_gt).transpose(1,0,2)[:, smpl_x.J_regressor_idx['pelvis'], None, :]
eval_result['mpvpe_all'].extend(
np.sqrt(np.sum(
(mesh_out_align - mesh_gt)**2, -1)).mean(-1) * 1000)
mesh_out_align = rigid_align_batch(mesh_out, mesh_gt)
eval_result['pa_mpvpe_all'].extend(
np.sqrt(np.sum(
(mesh_out_align - mesh_gt)**2, -1)).mean(-1) * 1000)
# MPVPE from hand vertices
mesh_gt_lhand = mesh_gt[:, smpl_x.hand_vertex_idx['left_hand'], :]
mesh_out_lhand = mesh_out[:, smpl_x.hand_vertex_idx['left_hand'], :]
mesh_gt_rhand = mesh_gt[:, smpl_x.hand_vertex_idx['right_hand'], :]
mesh_out_rhand = mesh_out[:, smpl_x.hand_vertex_idx['right_hand'], :]
mesh_out_lhand_align = \
mesh_out_lhand - \
np.dot(smpl_x.J_regressor, mesh_out).transpose(1,0,2)[:, smpl_x.J_regressor_idx['lwrist'], None, :] + \
np.dot(smpl_x.J_regressor, mesh_gt).transpose(1,0,2)[:, smpl_x.J_regressor_idx['lwrist'], None, :]
mesh_out_rhand_align = \
mesh_out_rhand - \
np.dot(smpl_x.J_regressor, mesh_out).transpose(1,0,2)[:, smpl_x.J_regressor_idx['rwrist'], None, :] + \
np.dot(smpl_x.J_regressor, mesh_gt).transpose(1,0,2)[:, smpl_x.J_regressor_idx['rwrist'], None, :]
eval_result['mpvpe_l_hand'].extend(
np.sqrt(np.sum(
(mesh_out_lhand_align - mesh_gt_lhand)**2, -1)).mean(-1) *
1000)
eval_result['mpvpe_r_hand'].extend(
np.sqrt(np.sum(
(mesh_out_rhand_align - mesh_gt_rhand)**2, -1)).mean(-1) *
1000)
eval_result['mpvpe_hand'].extend(
(np.sqrt(np.sum(
(mesh_out_lhand_align - mesh_gt_lhand)**2, -1)).mean(-1) *
1000 +
np.sqrt(np.sum(
(mesh_out_rhand_align - mesh_gt_rhand)**2, -1)).mean(-1) *
1000) / 2.)
mesh_out_lhand_align = rigid_align_batch(mesh_out_lhand, mesh_gt_lhand)
mesh_out_rhand_align = rigid_align_batch(mesh_out_rhand, mesh_gt_rhand)
eval_result['pa_mpvpe_l_hand'].extend(
np.sqrt(np.sum(
(mesh_out_lhand_align - mesh_gt_lhand)**2, -1)).mean(-1) *
1000)
eval_result['pa_mpvpe_r_hand'].extend(
np.sqrt(np.sum(
(mesh_out_rhand_align - mesh_gt_rhand)**2, -1)).mean(-1) *
1000)
eval_result['pa_mpvpe_hand'].extend(
(np.sqrt(np.sum(
(mesh_out_lhand_align - mesh_gt_lhand)**2, -1)).mean(-1) *
1000 +
np.sqrt(np.sum(
(mesh_out_rhand_align - mesh_gt_rhand)**2, -1)).mean(-1) *
1000) / 2.)
save_error=True
if save_error:
writer = csv.writer(file)
new_line = [ann_idx[n], img_path[n], eval_result['mpvpe_all'][-1], eval_result['pa_mpvpe_all'][-1]]
writer.writerow(new_line)
return eval_result
def print_eval_result(self, eval_result):
print('======Egocentric======')
print('PA MPVPE (All): %.2f mm' % np.mean(eval_result['pa_mpvpe_all']))
print('PA MPVPE (L-Hands): %.2f mm' %
np.mean(eval_result['pa_mpvpe_l_hand']))
print('PA MPVPE (R-Hands): %.2f mm' %
np.mean(eval_result['pa_mpvpe_r_hand']))
print('PA MPVPE (Hands): %.2f mm' %
np.mean(eval_result['pa_mpvpe_hand']))
print('PA MPVPE (Face): %.2f mm' %
np.mean(eval_result['pa_mpvpe_face']))
print()
print('MPVPE (All): %.2f mm' % np.mean(eval_result['mpvpe_all']))
print('MPVPE (L-Hands): %.2f mm' %
np.mean(eval_result['mpvpe_l_hand']))
print('MPVPE (R-Hands): %.2f mm' %
np.mean(eval_result['mpvpe_r_hand']))
print('MPVPE (Hands): %.2f mm' % np.mean(eval_result['mpvpe_hand']))
print('MPVPE (Face): %.2f mm' % np.mean(eval_result['mpvpe_face']))
out_file = osp.join(cfg.result_dir,'Egocentric_val.txt')
if os.path.exists(out_file):
f = open(out_file, 'a+')
else:
f = open(out_file, 'w', encoding="utf-8")
f.write('\n')
f.write(f'{cfg.exp_name}\n')
f.write(f'Egocentric dataset: \n')
f.write('PA MPVPE (All): %.2f mm\n' %
np.mean(eval_result['pa_mpvpe_all']))
f.write('PA MPVPE (L-Hands): %.2f mm\n' %
np.mean(eval_result['pa_mpvpe_l_hand']))
f.write('PA MPVPE (R-Hands): %.2f mm\n' %
np.mean(eval_result['pa_mpvpe_r_hand']))
f.write('PA MPVPE (Hands): %.2f mm\n' %
np.mean(eval_result['pa_mpvpe_hand']))
f.write('PA MPVPE (Face): %.2f mm\n' %
np.mean(eval_result['pa_mpvpe_face']))
f.write('MPVPE (All): %.2f mm\n' % np.mean(eval_result['mpvpe_all']))
f.write('MPVPE (L-Hands): %.2f mm\n' %
np.mean(eval_result['mpvpe_l_hand']))
f.write('MPVPE (R-Hands): %.2f mm\n' %
np.mean(eval_result['mpvpe_r_hand']))
f.write('MPVPE (Hands): %.2f mm\n' % np.mean(eval_result['mpvpe_hand']))
f.write('MPVPE (Face): %.2f mm\n' % np.mean(eval_result['mpvpe_face']))