Spaces:
Sleeping
Sleeping
import os | |
import os.path as osp | |
from glob import glob | |
import numpy as np | |
from config.config import cfg | |
import copy | |
import json | |
import cv2 | |
import torch | |
from pycocotools.coco import COCO | |
from util.human_models import smpl_x | |
from util.preprocessing import load_img, process_bbox, load_ply | |
from util.transforms import rigid_align, rigid_align_batch | |
from humandata import HumanDataset | |
import csv | |
class EHF(HumanDataset): | |
def __init__(self, transform, data_split): | |
super(EHF, self).__init__(transform, data_split) | |
self.transform = transform | |
self.data_split = data_split | |
self.save_idx = 0 | |
# self.cam_param = {'R': [-2.98747896, 0.01172457, -0.05704687]} | |
# self.cam_param['R'], _ = cv2.Rodrigues(np.array(self.cam_param['R'])) | |
self.cam_param = {} | |
self.img_dir = 'data/data_weichen/ehf' | |
self.img_shape = [1200, 1600] | |
self.annot_path = 'data_tmp/multihuman_data/ehf_val_230908_100.npz' | |
self.annot_path_cache = 'data_tmp/cache/ehf_val_cache_230908_100.npz' | |
if self.use_cache and osp.isfile(self.annot_path_cache): | |
print(f'[{self.__class__.__name__}] loading cache from {self.annot_path_cache}') | |
self.datalist = self.load_cache(self.annot_path_cache) | |
else: | |
if self.use_cache: | |
print(f'[{self.__class__.__name__}] Cache not found, generating cache...') | |
self.datalist = self.load_data( | |
train_sample_interval=getattr(cfg, f'{self.__class__.__name__}_train_sample_interval', 1)) | |
if self.use_cache: | |
self.save_cache(self.annot_path_cache, self.datalist) | |
def evaluate(self, outs, cur_sample_idx): | |
annots = self.datalist | |
sample_num = len(outs) | |
eval_result = { | |
'pa_mpvpe_all': [], | |
'pa_mpvpe_l_hand': [], | |
'pa_mpvpe_r_hand': [], | |
'pa_mpvpe_hand': [], | |
'pa_mpvpe_face': [], | |
'mpvpe_all': [], | |
'mpvpe_l_hand': [], | |
'mpvpe_r_hand': [], | |
'mpvpe_hand': [], | |
'mpvpe_face': [], | |
'pa_mpjpe_body': [], | |
'pa_mpjpe_l_hand': [], | |
'pa_mpjpe_r_hand': [], | |
'pa_mpjpe_hand': [] | |
} | |
csv_file = f'{cfg.result_dir}/ehf_smplx_error.csv' | |
file = open(csv_file, 'a', newline='') | |
for n in range(sample_num): | |
annot = annots[cur_sample_idx + n] | |
ann_id = annot['img_path'].split('/')[-1].split('_')[0] | |
out = outs[n] | |
ann_idx = out['gt_ann_idx'] | |
img_path = [] | |
for ann_id in ann_idx: | |
img_path.append(annots[ann_id]['img_path']) | |
eval_result['img_path'] = img_path | |
eval_result['ann_idx'] = ann_idx | |
# MPVPE from all vertices np.dot(self.cam_param['R'], out['smplx_mesh_cam_target'].transpose(0,2,1)).transpose(1,2,0) | |
# mesh_gt = np.dot( | |
# self.cam_param['R'], | |
# out['smplx_mesh_cam_target'].transpose(0,2,1) | |
# ).transpose(1,2,0) | |
mesh_gt = out['smplx_mesh_cam_target'] | |
mesh_out = out['smplx_mesh_cam'] | |
# mesh_gt_align = rigid_align(mesh_gt, mesh_out) | |
# print(mesh_out.shape) | |
mesh_out_align = rigid_align_batch(mesh_out, mesh_gt) | |
eval_result['pa_mpvpe_all'].append( | |
np.sqrt(np.sum( | |
(mesh_out_align - mesh_gt)**2, -1)).mean() * 1000) | |
mesh_out_align = mesh_out - np.dot( | |
smpl_x.J_regressor, | |
mesh_out).transpose(1,0,2)[:, smpl_x.J_regressor_idx['pelvis'], None, :] + np.dot( | |
smpl_x.J_regressor, | |
mesh_gt).transpose(1,0,2)[:, smpl_x.J_regressor_idx['pelvis'], None, :] | |
eval_result['mpvpe_all'].append( | |
np.sqrt(np.sum( | |
(mesh_out_align - mesh_gt)**2, -1)).mean() * 1000) | |
# MPVPE from hand vertices | |
mesh_gt_lhand = mesh_gt[:, smpl_x.hand_vertex_idx['left_hand'], :] | |
mesh_out_lhand = mesh_out[:, smpl_x.hand_vertex_idx['left_hand'], :] | |
mesh_out_lhand_align = rigid_align_batch(mesh_out_lhand, mesh_gt_lhand) | |
mesh_gt_rhand = mesh_gt[:, smpl_x.hand_vertex_idx['right_hand'], :] | |
mesh_out_rhand = mesh_out[:, smpl_x.hand_vertex_idx['right_hand'], :] | |
mesh_out_rhand_align = rigid_align_batch(mesh_out_rhand, mesh_gt_rhand) | |
eval_result['pa_mpvpe_l_hand'].append( | |
np.sqrt(np.sum( | |
(mesh_out_lhand_align - mesh_gt_lhand)**2, -1)).mean() * | |
1000) | |
eval_result['pa_mpvpe_r_hand'].append( | |
np.sqrt(np.sum( | |
(mesh_out_rhand_align - mesh_gt_rhand)**2, -1)).mean() * | |
1000) | |
eval_result['pa_mpvpe_hand'].append( | |
(np.sqrt(np.sum( | |
(mesh_out_lhand_align - mesh_gt_lhand)**2, -1)).mean() * | |
1000 + | |
np.sqrt(np.sum( | |
(mesh_out_rhand_align - mesh_gt_rhand)**2, -1)).mean() * | |
1000) / 2.) | |
mesh_out_lhand_align = mesh_out_lhand - np.dot( | |
smpl_x.J_regressor, | |
mesh_out).transpose(1,0,2)[:, smpl_x.J_regressor_idx['lwrist'], None, :] + np.dot( | |
smpl_x.J_regressor, | |
mesh_gt).transpose(1,0,2)[:, smpl_x.J_regressor_idx['lwrist'], None, :] | |
mesh_out_rhand_align = mesh_out_rhand - np.dot( | |
smpl_x.J_regressor, | |
mesh_out).transpose(1,0,2)[:, smpl_x.J_regressor_idx['rwrist'], None, :] + np.dot( | |
smpl_x.J_regressor, | |
mesh_gt).transpose(1,0,2)[:, smpl_x.J_regressor_idx['rwrist'], None, :] | |
eval_result['mpvpe_l_hand'].append( | |
np.sqrt(np.sum( | |
(mesh_out_lhand_align - mesh_gt_lhand)**2, -1)).mean() * | |
1000) | |
eval_result['mpvpe_r_hand'].append( | |
np.sqrt(np.sum( | |
(mesh_out_rhand_align - mesh_gt_rhand)**2, -1)).mean() * | |
1000) | |
eval_result['mpvpe_hand'].append( | |
(np.sqrt(np.sum( | |
(mesh_out_lhand_align - mesh_gt_lhand)**2, -1)).mean() * | |
1000 + | |
np.sqrt(np.sum( | |
(mesh_out_rhand_align - mesh_gt_rhand)**2, -1)).mean() * | |
1000) / 2.) | |
# MPVPE from face vertices | |
mesh_gt_face = mesh_gt[:, smpl_x.face_vertex_idx, :] | |
mesh_out_face = mesh_out[:, smpl_x.face_vertex_idx, :] | |
mesh_out_face_align = rigid_align_batch(mesh_out_face, mesh_gt_face) | |
eval_result['pa_mpvpe_face'].append( | |
np.sqrt(np.sum( | |
(mesh_out_face_align - mesh_gt_face)**2, -1)).mean() * 1000) | |
mesh_out_face_align = mesh_out_face - np.dot( | |
smpl_x.J_regressor, | |
mesh_out).transpose(1,0,2)[:, smpl_x.J_regressor_idx['neck'], None, :] + np.dot( | |
smpl_x.J_regressor, | |
mesh_gt).transpose(1,0,2)[:, smpl_x.J_regressor_idx['neck'], None, :] | |
eval_result['mpvpe_face'].append( | |
np.sqrt(np.sum( | |
(mesh_out_face_align - mesh_gt_face)**2, -1)).mean() * 1000) | |
# MPJPE from body joints | |
joint_gt_body = np.dot(smpl_x.j14_regressor, mesh_gt).transpose(1,0,2) | |
joint_out_body = np.dot(smpl_x.j14_regressor, mesh_out).transpose(1,0,2) | |
joint_out_body_align = rigid_align_batch(joint_out_body, joint_gt_body) | |
eval_result['pa_mpjpe_body'].append( | |
np.sqrt(np.sum( | |
(joint_out_body_align - joint_gt_body)**2, -1)).mean() * | |
1000) | |
# MPJPE from hand joints | |
joint_gt_lhand = np.dot(smpl_x.orig_hand_regressor['left'], | |
mesh_gt).transpose(1,0,2) | |
joint_out_lhand = np.dot(smpl_x.orig_hand_regressor['left'], | |
mesh_out).transpose(1,0,2) | |
joint_out_lhand_align = rigid_align_batch(joint_out_lhand, | |
joint_gt_lhand) | |
joint_gt_rhand = np.dot(smpl_x.orig_hand_regressor['right'], | |
mesh_gt).transpose(1,0,2) | |
joint_out_rhand = np.dot(smpl_x.orig_hand_regressor['right'], | |
mesh_out).transpose(1,0,2) | |
joint_out_rhand_align = rigid_align_batch(joint_out_rhand, | |
joint_gt_rhand) | |
eval_result['pa_mpjpe_l_hand'].append( | |
np.sqrt(np.sum( | |
(joint_out_lhand_align - joint_gt_lhand)**2, -1)).mean() * | |
1000) | |
eval_result['pa_mpjpe_r_hand'].append( | |
np.sqrt(np.sum( | |
(joint_out_rhand_align - joint_gt_rhand)**2, 1)).mean() * | |
1000) | |
eval_result['pa_mpjpe_hand'].append( | |
(np.sqrt(np.sum( | |
(joint_out_lhand_align - joint_gt_lhand)**2, -1)).mean() * | |
1000 + | |
np.sqrt(np.sum( | |
(joint_out_rhand_align - joint_gt_rhand)**2, -1)).mean() * | |
1000) / 2.) | |
save_error=True | |
if save_error: | |
writer = csv.writer(file) | |
new_line = [ann_idx[n],img_path[n], eval_result['mpvpe_all'][-1], eval_result['pa_mpvpe_all'][-1]] | |
writer.writerow(new_line) | |
self.save_idx += 1 | |
# vis = cfg.vis | |
for k,v in eval_result.items(): | |
if k != 'img_path' and k != 'ann_idx': | |
if len(v)>1: | |
eval_result[k] = np.concatenate(v,axis=0) | |
else: | |
eval_result[k] = np.array(v) | |
return eval_result | |
def print_eval_result(self, eval_result): | |
print('======EHF======') | |
print('PA MPVPE (All): %.2f mm' % np.mean(eval_result['pa_mpvpe_all'])) | |
print('PA MPVPE (L-Hands): %.2f mm' % | |
np.mean(eval_result['pa_mpvpe_l_hand'])) | |
print('PA MPVPE (R-Hands): %.2f mm' % | |
np.mean(eval_result['pa_mpvpe_r_hand'])) | |
print('PA MPVPE (Hands): %.2f mm' % | |
np.mean(eval_result['pa_mpvpe_hand'])) | |
print('PA MPVPE (Face): %.2f mm' % | |
np.mean(eval_result['pa_mpvpe_face'])) | |
print() | |
print('MPVPE (All): %.2f mm' % np.mean(eval_result['mpvpe_all'])) | |
print('MPVPE (L-Hands): %.2f mm' % | |
np.mean(eval_result['mpvpe_l_hand'])) | |
print('MPVPE (R-Hands): %.2f mm' % | |
np.mean(eval_result['mpvpe_r_hand'])) | |
print('MPVPE (Hands): %.2f mm' % np.mean(eval_result['mpvpe_hand'])) | |
print('MPVPE (Face): %.2f mm' % np.mean(eval_result['mpvpe_face'])) | |
print() | |
print('PA MPJPE (Body): %.2f mm' % | |
np.mean(eval_result['pa_mpjpe_body'])) | |
print('PA MPJPE (L-Hands): %.2f mm' % | |
np.mean(eval_result['pa_mpjpe_l_hand'])) | |
print('PA MPJPE (R-Hands): %.2f mm' % | |
np.mean(eval_result['pa_mpjpe_r_hand'])) | |
print('PA MPJPE (Hands): %.2f mm' % | |
np.mean(eval_result['pa_mpjpe_hand'])) | |
out_file = osp.join(cfg.result_dir,'ehf_test.txt') | |
if os.path.exists(out_file): | |
f = open(out_file, 'a+') | |
else: | |
f = open(out_file, 'w', encoding="utf-8") | |
f.write('\n') | |
f.write(f'{cfg.exp_name}\n') | |
f.write(f'EHF dataset: \n') | |
f.write('PA MPVPE (All): %.2f mm\n' % | |
np.mean(eval_result['pa_mpvpe_all'])) | |
f.write('PA MPVPE (L-Hands): %.2f mm\n' % | |
np.mean(eval_result['pa_mpvpe_l_hand'])) | |
f.write('PA MPVPE (R-Hands): %.2f mm\n' % | |
np.mean(eval_result['pa_mpvpe_r_hand'])) | |
f.write('PA MPVPE (Hands): %.2f mm\n' % | |
np.mean(eval_result['pa_mpvpe_hand'])) | |
f.write('PA MPVPE (Face): %.2f mm\n' % | |
np.mean(eval_result['pa_mpvpe_face'])) | |
f.write('MPVPE (All): %.2f mm\n' % np.mean(eval_result['mpvpe_all'])) | |
f.write('MPVPE (L-Hands): %.2f mm\n' % | |
np.mean(eval_result['mpvpe_l_hand'])) | |
f.write('MPVPE (R-Hands): %.2f mm\n' % | |
np.mean(eval_result['mpvpe_r_hand'])) | |
f.write('MPVPE (Hands): %.2f mm\n' % np.mean(eval_result['mpvpe_hand'])) | |
f.write('MPVPE (Face): %.2f mm\n' % np.mean(eval_result['mpvpe_face'])) | |
f.write('PA MPJPE (Body): %.2f mm\n' % | |
np.mean(eval_result['pa_mpjpe_body'])) | |
f.write('PA MPJPE (L-Hands): %.2f mm\n' % | |
np.mean(eval_result['pa_mpjpe_l_hand'])) | |
f.write('PA MPJPE (R-Hands): %.2f mm\n' % | |
np.mean(eval_result['pa_mpjpe_r_hand'])) | |
f.write('PA MPJPE (Hands): %.2f mm\n' % | |
np.mean(eval_result['pa_mpjpe_hand'])) | |
f.close() | |