Spaces:
Sleeping
Sleeping
import os | |
import sys | |
import subprocess | |
import pkg_resources | |
def is_package_installed(package_name): | |
try: | |
pkg_resources.get_distribution(package_name) | |
return True | |
except pkg_resources.DistributionNotFound: | |
return False | |
if is_package_installed("mmcv"): | |
print("MMCV is installed.") | |
else: | |
print("MMCV is not installed. Build it from the source.") | |
os.environ["MMCV_WITH_OPS"] = "1" | |
os.environ["FORCE_MLU"] = "1" | |
subprocess.run(["pip", "install", "-e", "./mmcv"], check=True) | |
subprocess.run(["pip", "list"], check=True) | |
if is_package_installed("pytorch3d"): | |
print("pytorch3d is installed.") | |
else: | |
print("pytorch3d is not installed. Build it from the source.") | |
subprocess.run(["pip", "install", "-e", "./pytorch3d"], check=True) | |
if is_package_installed("MultiScaleDeformableAttention"): | |
print("MultiScaleDeformableAttention is installed.") | |
else: | |
print("MultiScaleDeformableAttention is not installed. Build it from the source.") | |
subprocess.run(["pip", "install", "-e", "./models/aios/ops"], check=True) | |
import os.path as osp | |
from pathlib import Path | |
import cv2 | |
import gradio as gr | |
import torch | |
import math | |
import spaces | |
from huggingface_hub import hf_hub_download | |
hf_hub_download(repo_id="ttxskk/AiOS", filename="aios_checkpoint.pth", local_dir="/home/user/app/pretrained_models") | |
OUT_FOLDER = '/home/user/app/demo_out' | |
os.makedirs(OUT_FOLDER, exist_ok=True) | |
DEMO_CONFIG = '/home/user/app/config/aios_smplx_demo.py' | |
MODEL_PATH = '/home/user/app/pretrained_models/aios_checkpoint.pth' | |
def infer(video_input, batch_size, threshold=0.5, num_person=1): | |
os.system(f'rm -rf {OUT_FOLDER}/*') | |
os.system(f'torchrun --nproc_per_node 1 \ | |
main.py \ | |
-c {DEMO_CONFIG} \ | |
--options batch_size={batch_size} backbone="resnet50" num_person={num_person} threshold={threshold} \ | |
--resume {MODEL_PATH} \ | |
--eval \ | |
--inference \ | |
--inference_input {video_input} \ | |
--to_vid \ | |
--output_dir {OUT_FOLDER}') | |
video_path = os.path.join(OUT_FOLDER, 'demo_vid.mp4') | |
save_path_img = os.path.join(OUT_FOLDER, 'res_img') | |
save_path_mesh = os.path.join(OUT_FOLDER, 'mesh') | |
save_mesh_file = os.path.join(OUT_FOLDER, 'mesh.zip') | |
os.system(f'zip -r {save_mesh_file} {save_path_mesh}') | |
yield video_path, save_mesh_file | |
TITLE = """ | |
<div style="display: flex; justify-content: center; align-items: center; text-align: center;"> | |
<div> | |
<h1 align="center">AiOS: All-in-One-Stage Expressive Human Pose and Shape Estimation</h1> | |
</div> | |
</div> | |
<div style="display: flex; justify-content: center; align-items: center; text-align: center;"> | |
<div style="display:flex; gap: 0.25rem;" align="center"> | |
<a href="https://ttxskk.github.io/AiOS/" target="_blank"><img src='https://img.shields.io/badge/Project-Page-Green'></a> | |
<a href="https://github.com/ttxskk/AiOS" target="_blank"><img src='https://img.shields.io/badge/Github-Code-blue'></a> | |
<a href="https://ttxskk.github.io/AiOS/assets/aios_cvpr24.pdf" target="_blank"><img src='https://img.shields.io/badge/Paper-Arxiv-red'></a> | |
</div> | |
</div> | |
<div style="font-size: 1.1rem; color: #555; max-width: 800px; margin: 1rem auto; line-height: 1.5; justify-content: center; align-items: center; text-align: center;"> | |
<div> | |
<p>Recover multiple expressive human pose and shape recovery from an RGB image without any additional requirements, such as an off-the-shelf detection model.</h1> | |
</div> | |
</div> | |
""" | |
with gr.Blocks(title="AiOS", theme=gr.themes.Soft(primary_hue="blue", secondary_hue="gray")) as demo: | |
gr.Markdown(TITLE) | |
with gr.Row(): | |
with gr.Column(scale=2): | |
video_input = gr.Video(label="Input video", elem_classes="video") | |
with gr.Column(scale=1): | |
batch_size = gr.Textbox(label="Batch Size", type="text", value=8) | |
num_person = gr.Textbox(label="Number of Person", type="text", value=1) | |
threshold = gr.Slider(0, 1.0, value=0.5, label='Score Threshold') | |
send_button = gr.Button("Infer") | |
gr.HTML("""<br/>""") | |
with gr.Row(): | |
with gr.Column(): | |
# processed_frames = gr.Image(label="Last processed frame") | |
video_output = gr.Video(elem_classes="video") | |
with gr.Column(): | |
meshes_output = gr.File(label="3D meshes") | |
send_button.click(fn=infer, inputs=[video_input, batch_size, threshold, num_person], outputs=[video_output, meshes_output]) | |
# example_videos = gr.Examples([ | |
# ['./assets/01.mp4'], | |
# ['./assets/02.mp4'], | |
# ['./assets/03.mp4'], | |
# ['./assets/04.mp4'], | |
# ['./assets/05.mp4'], | |
# ['./assets/06.mp4'], | |
# ['./assets/07.mp4'], | |
# ['./assets/08.mp4'], | |
# ['./assets/09.mp4'], | |
# ], | |
# inputs=[video_input, 0.5]) | |
demo.queue().launch(debug=True) | |