Spaces:
Sleeping
Sleeping
import numpy as np | |
import cv2 | |
import random | |
from config.config import cfg | |
import math | |
from .human_models import smpl_x, smpl | |
from .transforms import cam2pixel, transform_joint_to_other_db, transform_joint_to_other_db_batch | |
from plyfile import PlyData, PlyElement | |
import torch | |
import torch.distributed as dist | |
def load_img(path, order='RGB'): | |
img = cv2.imread(path, cv2.IMREAD_COLOR | cv2.IMREAD_IGNORE_ORIENTATION) | |
if not isinstance(img, np.ndarray): | |
raise IOError('Fail to read %s' % path) | |
if order == 'RGB': | |
img = img[:, :, ::-1].copy() | |
img = img.astype(np.float32) | |
return img | |
def get_bbox(joint_img, joint_valid, extend_ratio=1.2): | |
x_img, y_img = joint_img[:, 0], joint_img[:, 1] | |
x_img = x_img[joint_valid == 1] | |
y_img = y_img[joint_valid == 1] | |
xmin = min(x_img) | |
ymin = min(y_img) | |
xmax = max(x_img) | |
ymax = max(y_img) | |
x_center = (xmin + xmax) / 2. | |
width = xmax - xmin | |
xmin = x_center - 0.5 * width * extend_ratio | |
xmax = x_center + 0.5 * width * extend_ratio | |
y_center = (ymin + ymax) / 2. | |
height = ymax - ymin | |
ymin = y_center - 0.5 * height * extend_ratio | |
ymax = y_center + 0.5 * height * extend_ratio | |
bbox = np.array([xmin, ymin, xmax - xmin, ymax - ymin]).astype(np.float32) | |
return bbox | |
def sanitize_bbox(bbox, img_width, img_height): | |
x, y, w, h = bbox | |
x1 = np.max((0, x)) | |
y1 = np.max((0, y)) | |
x2 = np.min((img_width - 1, x1 + np.max((0, w - 1)))) | |
y2 = np.min((img_height - 1, y1 + np.max((0, h - 1)))) | |
if w > 0 and h > 0 and x2 >= x1 and y2 >= y1: | |
bbox = np.array([x1, y1, x2 - x1 + 1, y2 - y1 + 1]) | |
else: | |
bbox = None | |
return bbox | |
def resize(ori_shape, size, max_size=None): | |
# size can be min_size (scalar) or (w, h) tuple | |
# import ipdb; ipdb.set_trace(context=15) | |
def get_size_with_aspect_ratio(image_size, size, max_size=None): | |
w, h = image_size | |
if max_size is not None: | |
min_original_size = float(min((w, h))) | |
max_original_size = float(max((w, h))) | |
if min_original_size ==0: | |
print('min_original_size:',min_original_size) | |
if max_original_size / (min_original_size) * size > max_size: | |
size = int(round(max_size * min_original_size / max_original_size)) | |
if (w <= h and w == size) or (h <= w and h == size): | |
return (w, h) | |
if w < h: | |
ow = size | |
oh = int(size * h / w) | |
else: | |
oh = size | |
ow = int(size * w / h) | |
return (ow, oh) | |
def get_size(ori_shape, size, max_size=None): | |
if isinstance(size, (list, tuple)): | |
return size[::-1] | |
else: | |
return get_size_with_aspect_ratio(ori_shape, size, max_size) | |
size = get_size(ori_shape, size, max_size) | |
return size | |
def process_bbox(bbox, img_width, img_height, ratio=1.): | |
bbox = np.array(bbox, dtype=np.float32) | |
# aspect ratio preserving bbox | |
w = bbox[2] | |
h = bbox[3] | |
c_x = bbox[0] + w / 2. | |
c_y = bbox[1] + h / 2. | |
bbox[2] = w * ratio | |
bbox[3] = h * ratio | |
bbox[0] = c_x - bbox[2] / 2. | |
bbox[1] = c_y - bbox[3] / 2. | |
bbox = sanitize_bbox(bbox, img_width, img_height) | |
return bbox | |
def get_aug_config(data_name): | |
scale_factor = 0.25 | |
rot_factor = 30 | |
color_factor = 0.2 | |
crop_factor = 0.1 | |
if data_name == 'GTA_Human2': | |
sample_ratio = 0.5 | |
sample_prob = 0.5 | |
elif data_name == 'AGORA_MM': | |
sample_ratio = 0.5 | |
sample_prob = 0.7 | |
elif data_name == 'BEDLAM': | |
sample_ratio = 0.6 | |
sample_prob = 0.7 | |
elif data_name == 'Synbody': | |
sample_ratio = 0.6 | |
sample_prob = 0.7 | |
elif data_name == 'COCO_NA': | |
sample_ratio = 0.6 | |
sample_prob = 0.7 | |
elif data_name == 'CrowdPose': | |
sample_ratio = 0.5 | |
sample_prob = 0.5 | |
elif data_name == 'PoseTrack': | |
sample_ratio = 0.5 | |
sample_prob = 0.3 | |
elif data_name == 'UBody_MM': | |
sample_ratio = 0.5 | |
sample_prob = 0.3 | |
elif data_name == 'ARCTIC': | |
sample_ratio = 0.5 | |
sample_prob = 0.3 | |
elif data_name == 'RICH': | |
sample_ratio = 0.5 | |
sample_prob = 0.3 | |
elif data_name == 'EgoBody_Egocentric': | |
sample_ratio = 0.5 | |
sample_prob = 0.3 | |
elif data_name == 'EgoBody_Kinect': | |
sample_ratio = 0.5 | |
sample_prob = 0.3 | |
else: | |
sample_ratio = 0.5 | |
sample_prob = 0.3 | |
scale = np.clip(np.random.randn(), -1.0, 1.0) * scale_factor + 1.0 | |
rot = np.clip(np.random.randn(), -2.0, | |
2.0) * rot_factor if random.random() <= 0.6 else 0 | |
c_up = 1.0 + color_factor | |
c_low = 1.0 - color_factor | |
color_scale = np.array([ | |
random.uniform(c_low, c_up), | |
random.uniform(c_low, c_up), | |
random.uniform(c_low, c_up) | |
]) | |
do_flip = random.random() < 0.5 | |
crop_hw = np.array([ | |
0.2 - np.random.rand() * crop_factor, 0.2 - np.random.rand() * crop_factor | |
]) | |
# crop_hw = np.array([ | |
# 0.3 - np.random.rand() * crop_factor, 0.3 - np.random.rand() * crop_factor | |
# ]) | |
return scale, rot, color_scale, do_flip, crop_hw, sample_ratio, sample_prob | |
def augmentation_keep_size(img, bbox, data_split): | |
ori_shape = img.shape[:2][::-1] | |
if getattr(cfg, 'no_aug', False) and data_split == 'train': | |
scale, rot, color_scale, do_flip,size,crop = 1.0, 0.0, np.array([1, 1, 1]), False, ori_shape, np.array([1,1]) | |
size = random.choice(cfg.train_sizes) | |
max_size = cfg.train_max_size | |
elif data_split == 'train': | |
scale, rot, color_scale, do_flip, crop = get_aug_config() | |
rot=0 | |
# scale, rot, do_flip, crop = 1.0, 0.0, False, np.array([1,1]) | |
size = random.choice(cfg.train_sizes) | |
max_size = cfg.train_max_size | |
else: | |
scale, rot, color_scale, do_flip, crop = 1.0, 0.0, np.array([1, 1, 1]), False, np.array([1,1]) | |
size = random.choice(cfg.test_sizes) | |
max_size = cfg.test_max_size | |
crop_bbox_wh = (bbox[2:]*crop).astype(np.uint32) | |
xy_range = img.shape[:2][::-1]-crop_bbox_wh | |
crop_bbox_xywh = np.array([np.random.randint(0,xy_range[0]+1),np.random.randint(0,xy_range[1]+1),crop_bbox_wh[0],crop_bbox_wh[1]]) | |
reshape_size = resize(crop_bbox_xywh[2:], size, max_size) | |
img, trans, inv_trans = generate_patch_image(img, crop_bbox_xywh, 1, rot, do_flip, reshape_size[::-1]) | |
img = np.clip(img * color_scale[None, None, :], 0, 255) | |
return img, trans, inv_trans, rot, do_flip | |
def augmentation_instance_sample(img, bbox, data_split,data,dataname): | |
ori_shape = img.shape[:2][::-1] | |
if getattr(cfg, 'no_aug', False) and data_split == 'train': | |
scale, rot, color_scale, do_flip,size,crop,sample_ratio,sample_prob = 1.0, 0.0, np.array([1, 1, 1]), False, ori_shape, np.array([1,1]), 0,0 | |
size = random.choice(cfg.train_sizes) | |
max_size = cfg.train_max_size | |
elif data_split == 'train': | |
scale, rot, color_scale, do_flip, crop, sample_ratio,sample_prob = get_aug_config(dataname) | |
rot=0 | |
# scale, rot, do_flip, crop = 1.0, 0.0, False, np.array([1,1]) | |
size = random.choice(cfg.train_sizes) | |
max_size = cfg.train_max_size | |
else: | |
scale, rot, color_scale, do_flip, crop,sample_ratio,sample_prob = 1.0, 0.0, np.array([1, 1, 1]), False, np.array([1,1]),0,0 | |
size = random.choice(cfg.test_sizes) | |
max_size = cfg.test_max_size | |
if random.random() < sample_prob: | |
crop_person_number = len(data['bbox']) | |
if random.random() < sample_ratio: | |
if random.random() < 0.6: | |
crop_person_number_sample = 1 | |
else: | |
crop_person_number_sample = np.random.randint(crop_person_number) + 1 | |
else: | |
crop_person_number_sample = crop_person_number | |
sample_ids = np.array( | |
random.sample(list(range(crop_person_number)), crop_person_number_sample)) | |
bbox_xyxy = [] | |
bbox_xyxy = np.stack(data['bbox'],axis=0)[sample_ids] | |
leftTop_ = bbox_xyxy[:, :2] | |
leftTop_ = np.array([np.min(leftTop_[:, 0]), np.min(leftTop_[:, 1])]) | |
rightBottom_ = bbox_xyxy[:, 2:4] | |
rightBottom_ = np.array( | |
[np.max(rightBottom_[:, 0]), | |
np.max(rightBottom_[:, 1])]) | |
crop_bbox_xyxy = np.concatenate([leftTop_, rightBottom_]) | |
crop_bbox_xywh = crop_bbox_xyxy.copy() | |
crop_bbox_xywh[2:] = crop_bbox_xywh[2:]-crop_bbox_xywh[:2] | |
crop_bbox_xywh = adjust_bounding_box(crop_bbox_xywh,ori_shape[0],ori_shape[1]) | |
else: | |
crop_bbox_xywh = bbox.copy() | |
reshape_size = resize(crop_bbox_xywh[2:], size, max_size) | |
# try: | |
# reshape_size = resize(crop_bbox_xywh[2:], size, max_size) | |
# except Exception as e: | |
# print(crop_bbox_xywh) | |
# print(size) | |
# print(max_size) | |
# raise e | |
img, trans, inv_trans = generate_patch_image(img, crop_bbox_xywh, 1, rot, do_flip, reshape_size[::-1]) | |
img = np.clip(img * color_scale[None, None, :], 0, 255) | |
return img, trans, inv_trans, rot, do_flip | |
def adjust_bounding_box(input_bbox,image_width, image_height): | |
left_x, left_y, width, height = input_bbox | |
# Calculate original bounding box center | |
original_center_x = left_x + width / 2 | |
original_center_y = left_y + height / 2 | |
# Calculate target aspect ratio | |
target_aspect_ratio = image_width / image_height | |
# Adjust width and height to match target aspect ratio | |
if width / height > target_aspect_ratio: | |
# Bounding box is wider, adjust height | |
new_height = width / target_aspect_ratio | |
new_width = width | |
else: | |
# Bounding box is taller, adjust width | |
new_width = height * target_aspect_ratio | |
new_height = height | |
# Calculate new bounding box center | |
new_center_x = original_center_x | |
new_center_y = original_center_y | |
# Check if the adjusted bounding box is out of the image boundaries | |
if new_center_x - new_width / 2 < 0: | |
# Shift the bounding box to the right to fit within the image | |
new_center_x = new_width / 2 | |
elif new_center_x + new_width / 2 > image_width: | |
# Shift the bounding box to the left to fit within the image | |
new_center_x = image_width - new_width / 2 | |
if new_center_y - new_height / 2 < 0: | |
# Shift the bounding box down to fit within the image | |
new_center_y = new_height / 2 | |
elif new_center_y + new_height / 2 > image_height: | |
# Shift the bounding box up to fit within the image | |
new_center_y = image_height - new_height / 2 | |
# Calculate adjusted left x and left y of the bounding box and convert to integers | |
adjusted_left_x = int(new_center_x - new_width / 2) | |
adjusted_left_y = int(new_center_y - new_height / 2) | |
# Ensure width and height are integers as well | |
adjusted_width = int(new_width) | |
adjusted_height = int(new_height) | |
# Return adjusted bounding box coordinates (left x, left y, width, height) | |
return np.array([adjusted_left_x, adjusted_left_y, adjusted_width, adjusted_height]) | |
def generate_patch_image(cvimg, bbox, scale, rot, do_flip, out_shape): | |
img = cvimg.copy() | |
img_height, img_width, img_channels = img.shape | |
bb_c_x = float(bbox[0] + 0.5 * bbox[2]) | |
bb_c_y = float(bbox[1] + 0.5 * bbox[3]) | |
bb_width = float(bbox[2]) | |
bb_height = float(bbox[3]) | |
if do_flip: | |
img = img[:, ::-1, :] | |
bb_c_x = img_width - bb_c_x - 1 | |
trans = gen_trans_from_patch_cv(bb_c_x, bb_c_y, bb_width, bb_height, | |
out_shape[1], out_shape[0], scale, rot) | |
img_patch = cv2.warpAffine(img, | |
trans, (int(out_shape[1]), int(out_shape[0])), | |
flags=cv2.INTER_LINEAR) | |
img_patch = img_patch.astype(np.float32) | |
inv_trans = gen_trans_from_patch_cv(bb_c_x, | |
bb_c_y, | |
bb_width, | |
bb_height, | |
out_shape[1], | |
out_shape[0], | |
scale, | |
rot, | |
inv=True) | |
return img_patch, trans, inv_trans | |
def rotate_2d(pt_2d, rot_rad): | |
x = pt_2d[0] | |
y = pt_2d[1] | |
sn, cs = np.sin(rot_rad), np.cos(rot_rad) | |
xx = x * cs - y * sn | |
yy = x * sn + y * cs | |
return np.array([xx, yy], dtype=np.float32) | |
def gen_trans_from_patch_cv(c_x, | |
c_y, | |
src_width, | |
src_height, | |
dst_width, | |
dst_height, | |
scale, | |
rot, | |
inv=False): | |
# augment size with scale | |
src_w = src_width * scale | |
src_h = src_height * scale | |
src_center = np.array([c_x, c_y], dtype=np.float32) | |
# augment rotation | |
rot_rad = np.pi * rot / 180 | |
src_downdir = rotate_2d(np.array([0, src_h * 0.5], dtype=np.float32), | |
rot_rad) | |
src_rightdir = rotate_2d(np.array([src_w * 0.5, 0], dtype=np.float32), | |
rot_rad) | |
dst_w = dst_width | |
dst_h = dst_height | |
dst_center = np.array([dst_w * 0.5, dst_h * 0.5], dtype=np.float32) | |
dst_downdir = np.array([0, dst_h * 0.5], dtype=np.float32) | |
dst_rightdir = np.array([dst_w * 0.5, 0], dtype=np.float32) | |
src = np.zeros((3, 2), dtype=np.float32) | |
src[0, :] = src_center | |
src[1, :] = src_center + src_downdir | |
src[2, :] = src_center + src_rightdir | |
dst = np.zeros((3, 2), dtype=np.float32) | |
dst[0, :] = dst_center | |
dst[1, :] = dst_center + dst_downdir | |
dst[2, :] = dst_center + dst_rightdir | |
if inv: | |
trans = cv2.getAffineTransform(np.float32(dst), np.float32(src)) | |
else: | |
trans = cv2.getAffineTransform(np.float32(src), np.float32(dst)) | |
trans = trans.astype(np.float32) | |
return trans | |
def process_db_coord_batch_no_valid(joint_img, joint_cam, do_flip, | |
img_shape, flip_pairs, img2bb_trans, rot, | |
src_joints_name, target_joints_name, | |
input_img_shape): | |
joint_img_original = joint_img.copy() | |
joint_img, joint_cam = joint_img.copy(), joint_cam.copy() | |
# flip augmentation | |
if do_flip: | |
joint_cam[:, :, 0] = -joint_cam[:, :, 0] | |
joint_img[:, :, 0] = img_shape[1] - 1 - joint_img[:, :, 0] | |
for pair in flip_pairs: | |
joint_img[:, pair[0], :], joint_img[:, pair[ | |
1], :] = joint_img[:, pair[1], :].copy( | |
), joint_img[:, pair[0], :].copy() | |
joint_cam[:, pair[0], :], joint_cam[:, pair[ | |
1], :] = joint_cam[:, pair[1], :].copy( | |
), joint_cam[:, pair[0], :].copy() | |
# 3D data rotation augmentation | |
rot_aug_mat = np.array( | |
[[np.cos(np.deg2rad(-rot)), -np.sin(np.deg2rad(-rot)), 0], | |
[np.sin(np.deg2rad(-rot)), | |
np.cos(np.deg2rad(-rot)), 0], [0, 0, 1]], | |
dtype=np.float32) | |
num_p, num_joints, joints_dim = joint_cam.shape | |
joint_cam = joint_cam.reshape(num_p * num_joints, joints_dim) | |
joint_cam[:,:-1] = np.dot(rot_aug_mat, joint_cam[:,:-1].transpose(1, 0)).transpose(1, 0) | |
joint_cam = joint_cam.reshape(num_p, num_joints, joints_dim) | |
# affine transformation | |
joint_img_xy1 = \ | |
np.concatenate((joint_img[:, :, :2], np.ones_like(joint_img[:, :, :1])), 2) | |
joint_img_xy1 = joint_img_xy1.reshape(num_p * num_joints, 3) | |
joint_img[:, :, :2] = np.dot(img2bb_trans, | |
joint_img_xy1.transpose(1, 0)).transpose( | |
1, 0).reshape(num_p, num_joints, 2) | |
joint_img[:, :, | |
0] = joint_img[:, :, | |
0] / input_img_shape[1] * cfg.output_hm_shape[2] | |
joint_img[:, :, | |
1] = joint_img[:, :, | |
1] / input_img_shape[0] * cfg.output_hm_shape[1] | |
# check truncation | |
# TODO | |
# remove 3rd | |
joint_trunc = ((joint_img_original[:,:, 0] >= 0) * (joint_img[:,:, 0] >= 0) * (joint_img[:,:, 0] < cfg.output_hm_shape[2]) * \ | |
(joint_img_original[:,:, 1] >= 0) *(joint_img[:,:, 1] >= 0) * (joint_img[:,:, 1] < cfg.output_hm_shape[1]) * \ | |
joint_img[:,:, -1] | |
).reshape(num_p, -1, 1).astype(np.float32) | |
# transform joints to target db joints | |
joint_img = transform_joint_to_other_db_batch(joint_img, src_joints_name, | |
target_joints_name) | |
joint_cam_wo_ra = transform_joint_to_other_db_batch( | |
joint_cam, src_joints_name, target_joints_name) | |
joint_trunc = transform_joint_to_other_db_batch(joint_trunc, | |
src_joints_name, | |
target_joints_name) | |
# root-alignment, for joint_cam input wo ra | |
joint_cam_ra = joint_cam_wo_ra.copy() | |
joint_cam_ra[:,:,:3] = joint_cam_ra[:,:,:3] - joint_cam_ra[:, smpl_x.root_joint_idx, | |
None, :3] # root-relative | |
joint_cam_ra[:, smpl_x.joint_part[ | |
'lhand'], :3] = joint_cam_ra[:, smpl_x.joint_part[ | |
'lhand'], :3] - joint_cam_ra[:, smpl_x.lwrist_idx, | |
None, :3] # left hand root-relative | |
joint_cam_ra[:, smpl_x.joint_part[ | |
'rhand'], :3] = joint_cam_ra[:, smpl_x.joint_part[ | |
'rhand'], :3] - joint_cam_ra[:, smpl_x.rwrist_idx, | |
None, :3] # right hand root-relative | |
joint_cam_ra[:, smpl_x. | |
joint_part['face'], :3] = joint_cam_ra[:, smpl_x.joint_part[ | |
'face'], :3] - joint_cam_ra[:, smpl_x.neck_idx, | |
None, :3] # face root-relative | |
return joint_img, joint_cam_wo_ra, joint_cam_ra, joint_trunc | |
def process_human_model_output_batch_ubody(human_model_param, | |
do_flip, | |
rot, | |
as_smplx, | |
part_valid | |
): | |
num_person = human_model_param['body_pose'].shape[0] | |
human_model = smpl_x | |
rotation_valid = np.ones((num_person,smpl_x.orig_joint_num), dtype=np.float32) | |
coord_valid = np.ones((num_person,smpl_x.joint_num), dtype=np.float32) | |
# expr_valid = np.ones((num_person), dtype=np.float32) | |
# shape_valid = np.ones((num_person), dtype=np.float32) | |
# root_pose, body_pose, shape, trans = human_model_param['root_pose'], human_model_param['body_pose'], \ | |
# human_model_param['shape'], human_model_param['trans'] | |
if 'smplx_valid' in human_model_param: | |
smplx_valid = human_model_param['smplx_valid'] | |
shape_valid = human_model_param['smplx_valid'] | |
else: | |
smplx_valid = np.ones(num_person, dtype=np.bool8) | |
shape_valid = np.ones(num_person, dtype=np.bool8) | |
if 'expr_valid' in human_model_param: | |
expr_valid = human_model_param['expr_valid'] | |
else: | |
expr_valid = np.ones(num_person, dtype=np.bool8) | |
expr_valid*=smplx_valid | |
if 'face_valid' in human_model_param: | |
face_valid = human_model_param['face_valid'] | |
else: | |
face_valid = np.ones(num_person, dtype=np.bool8) | |
face_valid *= smplx_valid | |
# check lhand valid key exsits | |
if 'lhand_valid' in human_model_param: | |
lhand_valid = human_model_param['lhand_valid'] | |
else: | |
lhand_valid = np.ones(num_person, dtype=np.bool8) | |
lhand_valid*=smplx_valid | |
# check rhand valid key exsits | |
if 'rhand_valid' in human_model_param: | |
rhand_valid = human_model_param['rhand_valid'] | |
else: | |
rhand_valid = np.ones(num_person, dtype=np.bool8) | |
rhand_valid*=smplx_valid | |
# check validation of the smplx parameters | |
if 'body_pose' in human_model_param \ | |
and human_model_param['body_pose'] is not None: | |
root_pose, body_pose = human_model_param['root_pose'], human_model_param['body_pose'] | |
shape, trans = human_model_param['shape'], human_model_param['trans'] | |
root_pose = torch.FloatTensor(root_pose).view(num_person, 1, 3) | |
body_pose = torch.FloatTensor(body_pose).view(num_person, -1, 3) | |
shape = torch.FloatTensor(shape).view(num_person, -1) | |
trans = torch.FloatTensor(trans).view(num_person,-1) | |
else: | |
root_pose = np.zeros((num_person, 3), dtype=np.float32) | |
body_pose = np.zeros((num_person, 3 * len(smpl_x.orig_joint_part['body'])), dtype=np.float32) | |
shape = np.zeros((num_person, 10), dtype=np.float32) | |
trans = np.zeros((num_person, 3), dtype=np.float32) | |
rotation_valid[:, smpl_x.orig_joint_part['body']] = 0 | |
coord_valid[:, smpl_x.joint_part['body']] = 0 | |
body_pose*=smplx_valid[:, None, None] | |
root_pose*=smplx_valid[:, None, None] | |
shape*=smplx_valid[:, None] | |
trans*=smplx_valid[:, None] | |
rotation_valid[:, smpl_x.orig_joint_part['body']]*=smplx_valid[:,None] | |
coord_valid[:, smpl_x.joint_part['body']]*=smplx_valid[:,None] | |
# check validation of the smplx parameters | |
if 'lhand_pose' in human_model_param \ | |
and human_model_param['lhand_pose'] is not None: | |
lhand_pose = human_model_param['lhand_pose'] | |
lhand_pose = torch.FloatTensor(lhand_pose).view(num_person, -1, 3) | |
# lhand_valid = part_valid['lhand'] | |
# rotation_valid[:, smpl_x.orig_joint_part['lhand']]*=lhand_valid[:,None] | |
# coord_valid[:, smpl_x.joint_part['lhand']]*=lhand_valid[:,None] | |
else: | |
lhand_pose = np.zeros((num_person, 3 * len(smpl_x.orig_joint_part['lhand'])), dtype=np.float32) | |
rotation_valid[:, smpl_x.orig_joint_part['lhand']] = 0 | |
coord_valid[:, smpl_x.joint_part['lhand']] = 0 | |
lhand_pose*=lhand_valid[:,None,None] | |
rotation_valid[:, smpl_x.orig_joint_part['lhand']]*=lhand_valid[:,None] | |
coord_valid[:, smpl_x.joint_part['lhand']]*=lhand_valid[:,None] | |
if 'rhand_pose' in human_model_param \ | |
and human_model_param['rhand_pose'] is not None: | |
rhand_pose = human_model_param['rhand_pose'] | |
rhand_pose = torch.FloatTensor(rhand_pose).view(num_person, -1, 3) | |
# rhand_valid = part_valid['rhand'] | |
# rotation_valid[:, smpl_x.orig_joint_part['rhand']]*=rhand_valid[:,None] | |
# coord_valid[:, smpl_x.joint_part['rhand']]*=rhand_valid[:,None] | |
else: | |
rhand_pose = np.zeros((num_person, 3 * len(smpl_x.orig_joint_part['rhand'])), dtype=np.float32) | |
rotation_valid[:, smpl_x.orig_joint_part['rhand']] = 0 | |
coord_valid[:, smpl_x.joint_part['rhand']] = 0 | |
rhand_pose*=rhand_valid[:,None,None] | |
rotation_valid[:, smpl_x.orig_joint_part['rhand']]*=rhand_valid[:,None] | |
coord_valid[:, smpl_x.joint_part['rhand']]*=rhand_valid[:,None] | |
if 'expr' in human_model_param and \ | |
human_model_param['expr'] is not None: | |
expr = human_model_param['expr'] | |
# face_valid = part_valid['face'] | |
# expr_valid = expr_valid*face_valid | |
else: | |
expr = np.zeros((num_person, smpl_x.expr_code_dim), dtype=np.float32) | |
expr_valid = expr_valid*0 | |
expr*=face_valid[:,None] | |
expr = torch.FloatTensor(expr).view(num_person,-1) | |
expr_valid*=face_valid # expr is invalid if face_valid is 0 | |
if 'jaw_pose' in human_model_param and \ | |
human_model_param['jaw_pose'] is not None: | |
jaw_pose = human_model_param['jaw_pose'] | |
# face_valid = part_valid['face'] | |
# rotation_valid[:, smpl_x.orig_joint_part['face']]*=face_valid[:,None] | |
# coord_valid[:, smpl_x.joint_part['face']]*=face_valid[:,None] | |
else: | |
jaw_pose = np.zeros((num_person, 3), dtype=np.float32) | |
rotation_valid[:,smpl_x.orig_joint_part['face']] = 0 | |
coord_valid[:,smpl_x.joint_part['face']] = 0 | |
jaw_pose*=face_valid[:,None] | |
jaw_pose = torch.FloatTensor(jaw_pose).view(num_person, -1, 3) | |
rotation_valid[:, smpl_x.orig_joint_part['face']]*=face_valid[:,None] | |
coord_valid[:, smpl_x.joint_part['face']]*=face_valid[:,None] | |
if 'gender' in human_model_param and \ | |
human_model_param['gender'] is not None: | |
gender = human_model_param['gender'] | |
else: | |
gender = 'neutral' | |
if as_smplx == 'smpl': | |
rotation_valid[:,:] = 0 | |
rotation_valid[:,:21] = 1 | |
expr_valid = expr_valid*0 | |
coord_valid[:,:] = 0 | |
coord_valid[:,smpl_x.joint_part['body']] = 1 | |
root_pose = torch.FloatTensor(root_pose).view(num_person, 1, 3) | |
body_pose = torch.FloatTensor(body_pose).view(num_person, -1, 3) | |
lhand_pose = torch.FloatTensor( lhand_pose).view(num_person, -1, 3) | |
rhand_pose = torch.FloatTensor(rhand_pose).view(num_person, -1, 3) | |
jaw_pose = torch.FloatTensor(jaw_pose).view(num_person, -1, 3) | |
shape = torch.FloatTensor(shape).view(num_person, -1) | |
expr = torch.FloatTensor(expr).view(num_person,-1) | |
trans = torch.FloatTensor(trans).view(num_person,-1) | |
pose = torch.cat((root_pose, body_pose, lhand_pose, rhand_pose, jaw_pose),dim=1) | |
## so far, data augmentations are not applied yet | |
## now, apply data augmentations | |
# x,y affine transform, root-relative depth | |
# 3D data rotation augmentation | |
# rot_aug_mat = np.array( | |
# [[np.cos(np.deg2rad(-rot)), -np.sin(np.deg2rad(-rot)), 0], | |
# [np.sin(np.deg2rad(-rot)), | |
# np.cos(np.deg2rad(-rot)), 0], [0, 0, 1]], | |
# dtype=np.float32) | |
# parameters | |
# flip pose parameter (axis-angle) | |
if do_flip: | |
for pair in human_model.orig_flip_pairs: | |
pose[:, pair[0], :], pose[:, | |
pair[1], :] = pose[:, pair[1], :].clone( | |
), pose[:, pair[0], :].clone() | |
rotation_valid[:,pair[0]], rotation_valid[:,pair[1]] = rotation_valid[:,pair[1]].copy(), rotation_valid[:, | |
pair[0]].copy() | |
pose[:,:, 1:3] *= -1 # multiply -1 to y and z axis of axis-angle | |
# rotate root pose | |
pose = pose.numpy() | |
root_pose = pose[:, human_model.orig_root_joint_idx, :] | |
# for pose_i in range(len(root_pose)): | |
# root_pose_mat = cv2.Rodrigues(root_pose[pose_i])[0] | |
# root_pose[pose_i] = cv2.Rodrigues(np.dot(rot_aug_mat, | |
# root_pose_mat))[0][:, 0] | |
pose[:, human_model.orig_root_joint_idx] = root_pose.reshape(num_person, 3) | |
# change to mean shape if beta is too far from it | |
# shape[(shape.abs() > 3).any(dim=1)] = 0. | |
shape = shape.numpy().reshape(num_person, -1) | |
# shape_valid = shape.sum(-1)!=0 | |
# return results | |
pose = pose.reshape(num_person, -1) | |
expr = expr.numpy().reshape(num_person, -1) | |
return pose, shape, expr, rotation_valid, coord_valid, expr_valid, shape_valid | |
def process_human_model_output_batch_simplify(human_model_param, | |
do_flip, | |
rot, | |
as_smplx, data_name=None | |
): | |
num_person = human_model_param['body_pose'].shape[0] | |
human_model = smpl_x | |
rotation_valid = np.ones((num_person,smpl_x.orig_joint_num), dtype=np.float32) | |
coord_valid = np.ones((num_person,smpl_x.joint_num), dtype=np.float32) | |
# expr_valid = np.ones((num_person), dtype=np.float32) | |
# shape_valid = np.ones((num_person), dtype=np.float32) | |
# shape, trans = human_model_param['shape'], human_model_param['trans'] | |
# check smplx valid key exsits | |
if 'smplx_valid' in human_model_param: | |
smplx_valid = human_model_param['smplx_valid'] | |
shape_valid = human_model_param['smplx_valid'] | |
else: | |
smplx_valid = np.ones(num_person, dtype=np.bool8) | |
shape_valid = np.ones(num_person, dtype=np.bool8) | |
if 'expr_valid' in human_model_param: | |
expr_valid = human_model_param['expr_valid'] | |
else: | |
expr_valid = np.ones(num_person, dtype=np.bool8) | |
expr_valid*=smplx_valid | |
# check face valid key exsits | |
if 'face_valid' in human_model_param: | |
face_valid = human_model_param['face_valid'] | |
else: | |
face_valid = np.ones(num_person, dtype=np.bool8) | |
face_valid *= smplx_valid | |
# check lhand valid key exsits | |
if 'lhand_valid' in human_model_param: | |
lhand_valid = human_model_param['lhand_valid'] | |
else: | |
lhand_valid = np.ones(num_person, dtype=np.bool8) | |
lhand_valid*=smplx_valid | |
# check rhand valid key exsits | |
if 'rhand_valid' in human_model_param: | |
rhand_valid = human_model_param['rhand_valid'] | |
else: | |
rhand_valid = np.ones(num_person, dtype=np.bool8) | |
rhand_valid*=smplx_valid | |
# check validation of the smplx parameters | |
if 'body_pose' in human_model_param \ | |
and human_model_param['body_pose'] is not None: | |
root_pose, body_pose = human_model_param['root_pose'], human_model_param['body_pose'] | |
shape, trans = human_model_param['shape'], human_model_param['trans'] | |
root_pose = torch.FloatTensor(root_pose).view(num_person, 1, 3) | |
body_pose = torch.FloatTensor(body_pose).view(num_person, -1, 3) | |
shape = torch.FloatTensor(shape).view(num_person, -1) | |
trans = torch.FloatTensor(trans).view(num_person,-1) | |
else: | |
root_pose = np.zeros((num_person, 3), dtype=np.float32) | |
body_pose = np.zeros((num_person, 3 * len(smpl_x.orig_joint_part['body'])), dtype=np.float32) | |
shape = np.zeros((num_person, 10), dtype=np.float32) | |
trans = np.zeros((num_person, 3), dtype=np.float32) | |
rotation_valid[:, smpl_x.orig_joint_part['body']] = 0 | |
coord_valid[:, smpl_x.joint_part['body']] = 0 | |
body_pose*=smplx_valid[:, None, None] | |
root_pose*=smplx_valid[:, None, None] | |
shape*=smplx_valid[:, None] | |
trans*=smplx_valid[:, None] | |
rotation_valid[:, smpl_x.orig_joint_part['body']]*=smplx_valid[:,None] | |
coord_valid[:, smpl_x.joint_part['body']]*=smplx_valid[:,None] | |
if 'lhand_pose' in human_model_param \ | |
and human_model_param['lhand_pose'] is not None: | |
lhand_pose = human_model_param['lhand_pose'] | |
lhand_pose = torch.FloatTensor(lhand_pose).view(num_person, -1, 3) | |
else: | |
lhand_pose = np.zeros((num_person, 3 * len(smpl_x.orig_joint_part['lhand'])), dtype=np.float32) | |
rotation_valid[:, smpl_x.orig_joint_part['lhand']] = 0 | |
coord_valid[:, smpl_x.joint_part['lhand']] = 0 | |
lhand_pose*=lhand_valid[:,None,None] | |
rotation_valid[:, smpl_x.orig_joint_part['lhand']]*=lhand_valid[:,None] | |
coord_valid[:, smpl_x.joint_part['lhand']]*=lhand_valid[:,None] | |
if 'rhand_pose' in human_model_param \ | |
and human_model_param['rhand_pose'] is not None: | |
rhand_pose = human_model_param['rhand_pose'] | |
rhand_pose = torch.FloatTensor(rhand_pose).view(num_person, -1, 3) | |
else: | |
rhand_pose = np.zeros((num_person, 3 * len(smpl_x.orig_joint_part['rhand'])), dtype=np.float32) | |
rotation_valid[:, smpl_x.orig_joint_part['rhand']] = 0 | |
coord_valid[:, smpl_x.joint_part['rhand']] = 0 | |
rhand_pose*=rhand_valid[:,None,None] | |
rotation_valid[:, smpl_x.orig_joint_part['rhand']]*=rhand_valid[:,None] | |
coord_valid[:, smpl_x.joint_part['rhand']]*=rhand_valid[:,None] | |
# face valid > expr valid > face kps valid, but for synbody and bedlam | |
if 'expr' in human_model_param and \ | |
human_model_param['expr'] is not None: | |
expr = human_model_param['expr'] | |
else: | |
expr = np.zeros((num_person, smpl_x.expr_code_dim), dtype=np.float32) | |
expr_valid = expr_valid * 0 | |
expr*=face_valid[:,None] | |
expr = torch.FloatTensor(expr).view(num_person,-1) | |
expr_valid*=face_valid # expr is invalid if face_valid is 0 | |
# for coco and ubody, if face is invalid, jaw pose and face kps2d should be false | |
if 'jaw_pose' in human_model_param and \ | |
human_model_param['jaw_pose'] is not None: | |
jaw_pose = human_model_param['jaw_pose'] | |
else: | |
jaw_pose = np.zeros((num_person, 3), dtype=np.float32) | |
rotation_valid[:,smpl_x.orig_joint_part['face']] = 0 | |
coord_valid[:,smpl_x.joint_part['face']] = 0 | |
# if data_name not in ["BEDLAM"]: | |
# face_valid = face_valid * expr_valid * jaw_pose | |
# else: | |
# # synbody and bedlam exps valid is false but jaw pose and face kps2d is valid | |
# face_valid = face_valid | |
jaw_pose*=face_valid[:,None] | |
jaw_pose = torch.FloatTensor(jaw_pose).view(num_person, -1, 3) | |
rotation_valid[:, smpl_x.orig_joint_part['face']]*=face_valid[:,None] | |
coord_valid[:, smpl_x.joint_part['face']]*=face_valid[:,None] | |
# if data_name not in ["BEDLAM" , "SynBody"]: | |
# coord_valid[:, smpl_x.joint_part['face']] = coord_valid[:, smpl_x.joint_part['face']] * expr_valid[:,None] # expr valid? | |
# coord_valid[:, smpl_x.joint_part['face']] = coord_valid[:, smpl_x.joint_part['face']] * face_valid[:,None] | |
if 'gender' in human_model_param and \ | |
human_model_param['gender'] is not None: | |
gender = human_model_param['gender'] | |
else: | |
gender = 'neutral' | |
if as_smplx == 'smpl': | |
rotation_valid[:,:] = 0 | |
rotation_valid[:,:21] = 1 | |
expr_valid = expr_valid*0 | |
coord_valid[:,:] = 0 | |
coord_valid[:,smpl_x.joint_part['body']] = 1 | |
# print(root_pose.shape, body_pose.shape, lhand_pose.shape, rhand_pose.shape, jaw_pose.shape) | |
pose = torch.cat((root_pose, body_pose, lhand_pose, rhand_pose, jaw_pose),dim=1) | |
## so far, data augmentations are not applied yet | |
## now, apply data augmentations | |
# 3D data rotation augmentation | |
# rot_aug_mat = np.array( | |
# [[np.cos(np.deg2rad(-rot)), -np.sin(np.deg2rad(-rot)), 0], | |
# [np.sin(np.deg2rad(-rot)), | |
# np.cos(np.deg2rad(-rot)), 0], [0, 0, 1]], | |
# dtype=np.float32) | |
# parameters | |
# flip pose parameter (axis-angle) | |
if do_flip: | |
for pair in human_model.orig_flip_pairs: | |
pose[:, pair[0], :], pose[:, | |
pair[1], :] = pose[:, pair[1], :].clone( | |
), pose[:, pair[0], :].clone() | |
rotation_valid[:,pair[0]], rotation_valid[:,pair[1]] = rotation_valid[:,pair[1]].copy(), rotation_valid[:, | |
pair[0]].copy() | |
pose[:,:, 1:3] *= -1 # multiply -1 to y and z axis of axis-angle | |
# rotate root pose | |
pose = pose.numpy() | |
root_pose = pose[:, human_model.orig_root_joint_idx, :] | |
# for pose_i in range(len(root_pose)): | |
# root_pose_mat = cv2.Rodrigues(root_pose[pose_i])[0] | |
# root_pose[pose_i] = cv2.Rodrigues(np.dot(rot_aug_mat, | |
# root_pose_mat))[0][:, 0] | |
pose[:, human_model.orig_root_joint_idx] = root_pose.reshape(num_person, 3) | |
# change to mean shape if beta is too far from it | |
# shape[(shape.abs() > 3).any(dim=1)] = 0. | |
shape = shape.numpy().reshape(num_person, -1) | |
# shape_valid = shape.sum(-1)!=0 | |
# return results | |
pose = pose.reshape(num_person, -1) | |
expr = expr.numpy().reshape(num_person, -1) | |
return pose, shape, expr, rotation_valid, coord_valid, expr_valid, shape_valid | |
def load_obj(file_name): | |
v = [] | |
obj_file = open(file_name) | |
for line in obj_file: | |
words = line.split(' ') | |
if words[0] == 'v': | |
x, y, z = float(words[1]), float(words[2]), float(words[3]) | |
v.append(np.array([x, y, z])) | |
return np.stack(v) | |
def load_ply(file_name): | |
plydata = PlyData.read(file_name) | |
x = plydata['vertex']['x'] | |
y = plydata['vertex']['y'] | |
z = plydata['vertex']['z'] | |
v = np.stack((x, y, z), 1) | |
return v | |
def resize_bbox(bbox, scale=1.2): | |
if isinstance(bbox, list): | |
x1, y1, x2, y2 = bbox[0], bbox[1], bbox[2], bbox[3] | |
else: | |
x1, y1, x2, y2 = bbox | |
x_center = (x1 + x2) / 2.0 | |
y_center = (y1 + y2) / 2.0 | |
x_size, y_size = x2 - x1, y2 - y1 | |
x1_resize = x_center - x_size / 2.0 * scale | |
x2_resize = x_center + x_size / 2.0 * scale | |
y1_resize = y_center - y_size / 2.0 * scale | |
y2_resize = y_center + y_size / 2.0 * scale | |
bbox[0], bbox[1], bbox[2], bbox[ | |
3] = x1_resize, y1_resize, x2_resize, y2_resize | |
return bbox | |