Spaces:
Sleeping
Sleeping
"""Backbone modules.""" | |
from collections import OrderedDict | |
import os | |
import torch | |
import torch.nn.functional as F | |
import torchvision | |
from torch import nn | |
from torchvision.models._utils import IntermediateLayerGetter | |
from typing import Dict, List | |
from util.misc import NestedTensor, clean_state_dict, is_main_process | |
from ..position_encoding import build_position_encoding | |
from .swin_transformer import build_swin_transformer | |
class FrozenBatchNorm2d(torch.nn.Module): | |
"""BatchNorm2d where the batch statistics and the affine parameters are | |
fixed. | |
Copy-paste from torchvision.misc.ops with added eps before rqsrt, without | |
which any other models than torchvision.models.resnet[18,34,50,101] produce | |
nans. | |
""" | |
def __init__(self, n): | |
super(FrozenBatchNorm2d, self).__init__() | |
self.register_buffer('weight', torch.ones(n)) | |
self.register_buffer('bias', torch.zeros(n)) | |
self.register_buffer('running_mean', torch.zeros(n)) | |
self.register_buffer('running_var', torch.ones(n)) | |
def _load_from_state_dict(self, state_dict, prefix, local_metadata, strict, | |
missing_keys, unexpected_keys, error_msgs): | |
num_batches_tracked_key = prefix + 'num_batches_tracked' | |
if num_batches_tracked_key in state_dict: | |
del state_dict[num_batches_tracked_key] | |
super(FrozenBatchNorm2d, | |
self)._load_from_state_dict(state_dict, prefix, local_metadata, | |
strict, missing_keys, | |
unexpected_keys, error_msgs) | |
def forward(self, x): | |
w = self.weight.reshape(1, -1, 1, 1) | |
b = self.bias.reshape(1, -1, 1, 1) | |
rv = self.running_var.reshape(1, -1, 1, 1) | |
rm = self.running_mean.reshape(1, -1, 1, 1) | |
eps = 1e-5 | |
scale = w * (rv + eps).rsqrt() | |
bias = b - rm * scale | |
return x * scale + bias | |
class BackboneBase(nn.Module): | |
def __init__(self, backbone: nn.Module, train_backbone: bool, | |
num_channels: int, return_interm_indices: list): | |
super().__init__() | |
for name, parameter in backbone.named_parameters(): | |
if not train_backbone or 'layer0' not in name and 'layer1' not in name and 'layer2' not in name and 'layer3' not in name and 'layer4' not in name: | |
parameter.requires_grad_(False) | |
return_layers = {} | |
for idx, layer_index in enumerate(return_interm_indices): | |
return_layers.update({ | |
'layer{}'.format(5 - len(return_interm_indices) + idx): | |
'{}'.format(layer_index) | |
}) | |
self.body = IntermediateLayerGetter(backbone, | |
return_layers=return_layers) | |
self.num_channels = num_channels | |
def forward(self, tensor_list: NestedTensor): | |
xs = self.body(tensor_list.tensors) | |
out: Dict[str, NestedTensor] = {} | |
for name, x in xs.items(): | |
m = tensor_list.mask | |
assert m is not None | |
mask = F.interpolate(m[None].float(), | |
size=x.shape[-2:]).to(torch.bool)[0] | |
out[name] = NestedTensor(x, mask) | |
return out | |
class Backbone(BackboneBase): | |
"""ResNet backbone with frozen BatchNorm.""" | |
def __init__( | |
self, | |
name: str, | |
train_backbone: bool, | |
dilation: bool, | |
return_interm_indices: list, | |
batch_norm=FrozenBatchNorm2d, | |
): | |
if name in ['resnet18', 'resnet34', 'resnet50', 'resnet101']: | |
# backbone = getattr(torchvision.models, name)( | |
# replace_stride_with_dilation=[False, False, dilation], | |
# pretrained=is_main_process(), norm_layer=batch_norm) | |
backbone = getattr(torchvision.models, name)( | |
replace_stride_with_dilation=[False, False, dilation], | |
pretrained=False, | |
norm_layer=batch_norm) | |
else: | |
raise NotImplementedError( | |
'Why you can get here with name {}'.format(name)) | |
assert name not in ( | |
'resnet18', | |
'resnet34'), 'Only resnet50 and resnet101 are available.' | |
assert return_interm_indices in [[0, 1, 2, 3], [1, 2, 3], [3]] | |
num_channels_all = [256, 512, 1024, 2048] | |
num_channels = num_channels_all[4 - len(return_interm_indices):] | |
super().__init__(backbone, train_backbone, num_channels, | |
return_interm_indices) | |
class Joiner(nn.Sequential): | |
def __init__(self, backbone, position_embedding): | |
super().__init__(backbone, position_embedding) | |
def forward(self, tensor_list: NestedTensor): | |
xs = self[0](tensor_list) | |
out: List[NestedTensor] = [] | |
pos = [] | |
for name, x in xs.items(): | |
out.append(x) | |
pos.append(self[1](x).to(x.tensors.dtype)) | |
return out, pos | |
def build_backbone(args): | |
"""Useful args: | |
- backbone: backbone name | |
- lr_backbone: | |
- dilation | |
- return_interm_indices: available: [0,1,2,3], [1,2,3], [3] | |
- backbone_freeze_keywords: | |
- use_checkpoint: for swin only for now | |
""" | |
position_embedding = build_position_encoding(args) | |
train_backbone = args.lr_backbone > 0 | |
if not train_backbone: | |
raise ValueError('Please set lr_backbone > 0') | |
return_interm_indices = args.return_interm_indices | |
assert return_interm_indices in [[0, 1, 2, 3], [1, 2, 3], [3]] # [1,2,3] | |
backbone_freeze_keywords = args.backbone_freeze_keywords # None | |
use_checkpoint = getattr(args, 'use_checkpoint', False) # False | |
if args.backbone in ['resnet50', 'resnet101']: | |
backbone = Backbone(args.backbone, | |
train_backbone, | |
args.dilation, | |
return_interm_indices, | |
batch_norm=FrozenBatchNorm2d) | |
bb_num_channels = backbone.num_channels | |
elif args.backbone in [ | |
'swin_T_224_1k', 'swin_B_224_22k', 'swin_B_384_22k', | |
'swin_L_224_22k', 'swin_L_384_22k' | |
]: | |
pretrain_img_size = int(args.backbone.split('_')[-2]) | |
backbone = build_swin_transformer( | |
args.backbone, | |
pretrain_img_size=pretrain_img_size, | |
out_indices=tuple(return_interm_indices), | |
dilation=args.dilation, | |
use_checkpoint=use_checkpoint) | |
# freeze some layers | |
if backbone_freeze_keywords is not None: | |
for name, parameter in backbone.named_parameters(): | |
for keyword in backbone_freeze_keywords: | |
if keyword in name: | |
parameter.requires_grad_(False) | |
break | |
pretrained_dir = os.environ.get('pretrain_model_path') | |
# import pdb | |
# pdb.set_trace() | |
PTDICT = { | |
'swin_T_224_1k': 'swin_tiny_patch4_window7_224.pth', | |
'swin_B_384_22k': 'swin_base_patch4_window12_384.pth', | |
'swin_L_384_22k': 'swin_large_patch4_window12_384_22k.pth', | |
} | |
pretrainedpath = os.path.join(pretrained_dir, PTDICT[args.backbone]) | |
checkpoint = torch.load(pretrainedpath, map_location='cpu')['model'] | |
from collections import OrderedDict | |
def key_select_function(keyname): | |
if 'head' in keyname: | |
return False | |
if args.dilation and 'layers.3' in keyname: | |
return False | |
return True | |
_tmp_st = OrderedDict({ | |
k: v | |
for k, v in clean_state_dict(checkpoint).items() | |
if key_select_function(k) | |
}) | |
_tmp_st_output = backbone.load_state_dict(_tmp_st, strict=False) | |
print(str(_tmp_st_output)) | |
bb_num_channels = backbone.num_features[4 - | |
len(return_interm_indices):] | |
else: | |
raise NotImplementedError('Unknown backbone {}'.format(args.backbone)) | |
assert len(bb_num_channels) == len( | |
return_interm_indices | |
), f'len(bb_num_channels) {len(bb_num_channels)} != len(return_interm_indices) {len(return_interm_indices)}' | |
model = Joiner(backbone, position_embedding) | |
model.num_channels = bb_num_channels | |
assert isinstance( | |
bb_num_channels, | |
List), 'bb_num_channels is expected to be a List but {}'.format( | |
type(bb_num_channels)) | |
# import pdb; pdb.set_trace() | |
return model | |