Spaces:
Sleeping
Sleeping
# Copyright (c) OpenMMLab. All rights reserved. | |
import numpy as np | |
import pytest | |
import torch | |
import torch.nn as nn | |
from mmcv.utils import IS_CUDA_AVAILABLE, IS_MLU_AVAILABLE | |
class Loss(nn.Module): | |
def __init__(self): | |
super().__init__() | |
def forward(self, input, target): | |
input = input.view(-1) | |
target = target.view(-1) | |
return torch.mean(input - target) | |
class TestPSAMask: | |
def test_psa_mask_collect(self, device): | |
from mmcv.ops import PSAMask | |
test_loss = Loss() | |
input = np.fromfile( | |
'tests/data/for_psa_mask/psa_input.bin', dtype=np.float32) | |
output_collect = np.fromfile( | |
'tests/data/for_psa_mask/psa_output_collect.bin', dtype=np.float32) | |
input = input.reshape((4, 16, 8, 8)) | |
output_collect = output_collect.reshape((4, 64, 8, 8)) | |
label = torch.ones((4, 64, 8, 8)) | |
input = torch.FloatTensor(input) | |
input.requires_grad = True | |
psamask_collect = PSAMask('collect', (4, 4)) | |
# test collect cpu | |
test_output = psamask_collect(input) | |
loss = test_loss(test_output, label) | |
loss.backward() | |
test_output = test_output.detach().numpy() | |
assert np.allclose(test_output, output_collect) | |
assert test_output.shape == output_collect.shape | |
psamask_collect.to(device) | |
input = input.to(device) | |
label = label.to(device) | |
# test collect on device | |
test_output = psamask_collect(input) | |
loss = test_loss(test_output, label) | |
loss.backward() | |
test_output = test_output.detach().cpu().numpy() | |
assert np.allclose(test_output, output_collect) | |
assert test_output.shape == output_collect.shape | |
def test_psa_mask_distribute(self, device): | |
from mmcv.ops import PSAMask | |
test_loss = Loss() | |
input = np.fromfile( | |
'tests/data/for_psa_mask/psa_input.bin', dtype=np.float32) | |
output_distribute = np.fromfile( | |
'tests/data/for_psa_mask/psa_output_distribute.bin', | |
dtype=np.float32) | |
input = input.reshape((4, 16, 8, 8)) | |
output_distribute = output_distribute.reshape((4, 64, 8, 8)) | |
label = torch.ones((4, 64, 8, 8)) | |
input = torch.FloatTensor(input) | |
input.requires_grad = True | |
psamask_distribute = PSAMask('distribute', (4, 4)) | |
# test distribute cpu | |
test_output = psamask_distribute(input) | |
loss = test_loss(test_output, label) | |
loss.backward() | |
test_output = test_output.detach().numpy() | |
assert np.allclose(test_output, output_distribute) | |
assert test_output.shape == output_distribute.shape | |
psamask_distribute.to(device) | |
input = input.to(device) | |
label = label.to(device) | |
# test distribute on device | |
test_output = psamask_distribute(input) | |
loss = test_loss(test_output, label) | |
loss.backward() | |
test_output = test_output.detach().cpu().numpy() | |
assert np.allclose(test_output, output_distribute) | |
assert test_output.shape == output_distribute.shape | |