Spaces:
Sleeping
Sleeping
# Copyright (c) OpenMMLab. All rights reserved. | |
import numpy as np | |
import torch | |
def test_pixel_group(): | |
from mmcv.ops import pixel_group | |
np_score = np.array([[0, 0, 0, 0, 0, 0, 0, 0, 0, 0], | |
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0], | |
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0], | |
[0, 0.9, 0.9, 0.9, 0.9, 0.9, 0.9, 0.9, 0.9, 0], | |
[0, 0.9, 0.9, 0.9, 0.9, 0.9, 0.9, 0.9, 0.9, 0], | |
[0, 0.9, 0.9, 0.9, 0.9, 0.9, 0.9, 0.9, 0.9, 0], | |
[0, 0.9, 0.9, 0.9, 0.9, 0.9, 0.9, 0.9, 0.9, 0], | |
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0], | |
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0], | |
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]).astype(np.float32) | |
np_mask = (np_score > 0.5) | |
np_embedding = np.zeros((10, 10, 8)).astype(np.float32) | |
np_embedding[:, :7] = 0.9 | |
np_embedding[:, 7:] = 10.0 | |
np_kernel_label = np.array([[0, 0, 0, 0, 0, 0, 0, 0, 0, 0], | |
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0], | |
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0], | |
[0, 0, 1, 1, 1, 0, 0, 0, 2, 0], | |
[0, 0, 1, 1, 1, 0, 0, 0, 2, 0], | |
[0, 0, 1, 1, 1, 0, 0, 0, 2, 0], | |
[0, 0, 1, 1, 1, 0, 0, 0, 2, 0], | |
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0], | |
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0], | |
[0, 0, 0, 0, 0, 0, 0, 0, 0, | |
0]]).astype(np.int32) | |
np_kernel_contour = np.array([[0, 0, 0, 0, 0, 0, 0, 0, 0, 0], | |
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0], | |
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0], | |
[0, 0, 1, 1, 1, 0, 0, 0, 1, 0], | |
[0, 0, 1, 0, 1, 0, 0, 0, 1, 0], | |
[0, 0, 1, 0, 1, 0, 0, 0, 1, 0], | |
[0, 0, 1, 1, 1, 0, 0, 0, 1, 0], | |
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0], | |
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0], | |
[0, 0, 0, 0, 0, 0, 0, 0, 0, | |
0]]).astype(np.uint8) | |
kernel_region_num = 3 | |
distance_threshold = float(0.8) | |
result = pixel_group(np_score, np_mask, np_embedding, np_kernel_label, | |
np_kernel_contour, kernel_region_num, | |
distance_threshold) | |
gt_1 = [ | |
0.8999997973442078, 24.0, 1.0, 3.0, 2.0, 3.0, 3.0, 3.0, 4.0, 3.0, 5.0, | |
3.0, 6.0, 3.0, 1.0, 4.0, 2.0, 4.0, 3.0, 4.0, 4.0, 4.0, 5.0, 4.0, 6.0, | |
4.0, 1.0, 5.0, 2.0, 5.0, 3.0, 5.0, 4.0, 5.0, 5.0, 5.0, 6.0, 5.0, 1.0, | |
6.0, 2.0, 6.0, 3.0, 6.0, 4.0, 6.0, 5.0, 6.0, 6.0, 6.0 | |
] | |
gt_2 = [ | |
0.9000000357627869, 8.0, 7.0, 3.0, 8.0, 3.0, 7.0, 4.0, 8.0, 4.0, 7.0, | |
5.0, 8.0, 5.0, 7.0, 6.0, 8.0, 6.0 | |
] | |
assert np.allclose(result[0], [0, 0]) | |
assert np.allclose(result[1], gt_1) | |
assert np.allclose(result[2], gt_2) | |
# test torch Tensor | |
np_score_t = torch.from_numpy(np_score) | |
np_mask_t = torch.from_numpy(np_mask) | |
np_embedding_t = torch.from_numpy(np_embedding) | |
np_kernel_label_t = torch.from_numpy(np_kernel_label) | |
np_kernel_contour_t = torch.from_numpy(np_kernel_contour) | |
result = pixel_group(np_score_t, np_mask_t, np_embedding_t, | |
np_kernel_label_t, np_kernel_contour_t, | |
kernel_region_num, distance_threshold) | |
assert np.allclose(result[0], [0, 0]) | |
assert np.allclose(result[1], gt_1) | |
assert np.allclose(result[2], gt_2) | |