AiOS / mmcv /tests /test_ops /test_focal_loss.py
ttxskk
update
d7e58f0
raw
history blame
5.68 kB
# Copyright (c) OpenMMLab. All rights reserved.
import numpy as np
import pytest
import torch
from mmcv.utils import IS_CUDA_AVAILABLE, IS_MLU_AVAILABLE
_USING_PARROTS = True
try:
from parrots.autograd import gradcheck
except ImportError:
from torch.autograd import gradcheck
_USING_PARROTS = False
# torch.set_printoptions(precision=8, threshold=100)
inputs = [
([[1., 0], [0, 1.]], [0, 1]),
([[1., 0, -1.], [0, 1., 2.]], [2, 1]),
([[1e-6, 2e-6, 3e-6], [4e-6, 5e-5, 6e-4], [7e-3, 8e-2, 9e-1]], [1, 2, 0]),
]
softmax_outputs = [(0.00566451, [[-0.00657264, 0.00657264],
[0.00657264, -0.00657264]]),
(0.34956908, [[0.10165970, 0.03739851, -0.13905823],
[0.01227554, -0.10298023, 0.09070466]]),
(0.15754992, [[0.02590877, -0.05181759, 0.02590882],
[0.02589641, 0.02589760, -0.05179400],
[-0.07307514, 0.02234372, 0.05073142]])]
sigmoid_outputs = [(0.13562961, [[-0.00657264, 0.11185755],
[0.11185755, -0.00657264]]),
(1.10251057, [[0.28808805, 0.11185755, -0.09602935],
[0.11185755, -0.00657264, 0.40376765]]),
(0.42287254, [[0.07457182, -0.02485716, 0.07457201],
[0.07457211, 0.07457669, -0.02483728],
[-0.02462499, 0.08277918, 0.18050370]])]
class Testfocalloss:
def _test_softmax(self, dtype=torch.float):
if not torch.cuda.is_available():
return
from mmcv.ops import softmax_focal_loss
alpha = 0.25
gamma = 2.0
for case, output in zip(inputs, softmax_outputs):
np_x = np.array(case[0])
np_y = np.array(case[1])
np_x_grad = np.array(output[1])
x = torch.from_numpy(np_x).cuda().type(dtype)
x.requires_grad_()
y = torch.from_numpy(np_y).cuda().long()
loss = softmax_focal_loss(x, y, gamma, alpha, None, 'mean')
loss.backward()
assert np.allclose(loss.data.cpu().numpy(), output[0], 1e-2)
assert np.allclose(x.grad.data.cpu(), np_x_grad, 1e-2)
def _test_sigmoid(self, device, dtype=torch.float):
from mmcv.ops import sigmoid_focal_loss
alpha = 0.25
gamma = 2.0
for case, output in zip(inputs, sigmoid_outputs):
np_x = np.array(case[0])
np_y = np.array(case[1])
np_x_grad = np.array(output[1])
x = torch.from_numpy(np_x).to(device).type(dtype)
x.requires_grad_()
y = torch.from_numpy(np_y).to(device).long()
loss = sigmoid_focal_loss(x, y, gamma, alpha, None, 'mean')
loss.backward()
assert np.allclose(loss.data.cpu().numpy(), output[0], 1e-2)
assert np.allclose(x.grad.data.cpu(), np_x_grad, 1e-2)
def _test_grad_softmax(self, dtype=torch.float):
if not torch.cuda.is_available():
return
from mmcv.ops import SoftmaxFocalLoss
alpha = 0.25
gamma = 2.0
for case in inputs:
np_x = np.array(case[0])
np_y = np.array(case[1])
x = torch.from_numpy(np_x).cuda().type(dtype)
x.requires_grad_()
y = torch.from_numpy(np_y).cuda().long()
floss = SoftmaxFocalLoss(gamma, alpha)
if _USING_PARROTS:
# gradcheck(floss, (x, y),
# no_grads=[y])
pass
else:
gradcheck(floss, (x, y), eps=1e-2, atol=1e-2)
def _test_grad_sigmoid(self, dtype=torch.float):
if not torch.cuda.is_available():
return
from mmcv.ops import SigmoidFocalLoss
alpha = 0.25
gamma = 2.0
for case in inputs:
np_x = np.array(case[0])
np_y = np.array(case[1])
x = torch.from_numpy(np_x).cuda().type(dtype)
x.requires_grad_()
y = torch.from_numpy(np_y).cuda().long()
floss = SigmoidFocalLoss(gamma, alpha)
if _USING_PARROTS:
# gradcheck(floss, (x, y),
# no_grads=[y])
pass
else:
gradcheck(floss, (x, y), eps=1e-2, atol=1e-2)
def test_softmax_float(self):
self._test_softmax(dtype=torch.float)
def test_softmax_half(self):
self._test_softmax(dtype=torch.half)
@pytest.mark.parametrize('device', [
pytest.param(
'cuda',
marks=pytest.mark.skipif(
not IS_CUDA_AVAILABLE, reason='requires CUDA support')),
pytest.param(
'mlu',
marks=pytest.mark.skipif(
not IS_MLU_AVAILABLE, reason='requires MLU support'))
])
def test_sigmoid_float(self, device):
self._test_sigmoid(device=device, dtype=torch.float)
@pytest.mark.parametrize('device', [
pytest.param(
'cuda',
marks=pytest.mark.skipif(
not IS_CUDA_AVAILABLE, reason='requires CUDA support')),
pytest.param(
'mlu',
marks=pytest.mark.skipif(
not IS_MLU_AVAILABLE, reason='requires MLU support'))
])
def test_sigmoid_half(self, device):
self._test_sigmoid(device, dtype=torch.half)
def test_grad_softmax_float(self):
self._test_grad_softmax(dtype=torch.float)
def test_grad_sigmoid_float(self):
self._test_grad_sigmoid(dtype=torch.float)