Spaces:
Sleeping
Sleeping
# Copyright (c) OpenMMLab. All rights reserved. | |
import numpy as np | |
import pytest | |
import torch | |
from mmcv.utils import IS_CUDA_AVAILABLE, IS_MLU_AVAILABLE, IS_MPS_AVAILABLE | |
class TestBBox: | |
def _test_bbox_overlaps(self, device='cpu', dtype=torch.float): | |
from mmcv.ops import bbox_overlaps | |
b1 = torch.tensor([[1.0, 1.0, 3.0, 4.0], [2.0, 2.0, 3.0, 4.0], | |
[7.0, 7.0, 8.0, 8.0]]).to(device).type(dtype) | |
b2 = torch.tensor([[0.0, 2.0, 2.0, 5.0], [2.0, 1.0, 3.0, | |
3.0]]).to(device).type(dtype) | |
should_output = np.array([[0.33333334, 0.5], [0.2, 0.5], [0.0, 0.0]]) | |
out = bbox_overlaps(b1, b2, offset=1) | |
assert np.allclose(out.cpu().numpy(), should_output, 1e-2) | |
b1 = torch.tensor([[1.0, 1.0, 3.0, 4.0], [2.0, 2.0, 3.0, | |
4.0]]).to(device).type(dtype) | |
b2 = torch.tensor([[0.0, 2.0, 2.0, 5.0], [2.0, 1.0, 3.0, | |
3.0]]).to(device).type(dtype) | |
should_output = np.array([0.33333334, 0.5]) | |
out = bbox_overlaps(b1, b2, aligned=True, offset=1) | |
assert np.allclose(out.cpu().numpy(), should_output, 1e-2) | |
b1 = torch.tensor([[0.0, 0.0, 3.0, 3.0]]).to(device).type(dtype) | |
b2 = torch.tensor([[4.0, 0.0, 5.0, 3.0], [3.0, 0.0, 4.0, 3.0], | |
[2.0, 0.0, 3.0, 3.0], [1.0, 0.0, 2.0, | |
3.0]]).to(device).type(dtype) | |
should_output = np.array([0, 0.2, 0.5, 0.5]) | |
out = bbox_overlaps(b1, b2, offset=1) | |
assert np.allclose(out.cpu().numpy(), should_output, 1e-2) | |
def test_bbox_overlaps_float(self, device): | |
self._test_bbox_overlaps(device, dtype=torch.float) | |
def test_bbox_overlaps_half(self, device): | |
self._test_bbox_overlaps(device, dtype=torch.half) | |