AiOS / mmcv /tests /test_cnn /test_flops_counter.py
ttxskk
update
d7e58f0
raw
history blame
7.06 kB
# Copyright (c) OpenMMLab. All rights reserved.
import pytest
import torch
import torch.nn as nn
from mmcv.cnn import get_model_complexity_info
from mmcv.cnn.utils.flops_counter import flops_to_string, params_to_string
try:
from StringIO import StringIO
except ImportError:
from io import StringIO
# yapf: disable
gt_results = [
{'model': nn.Conv1d(3, 8, 3), 'input': (3, 16), 'flops': 1120.0, 'params': 80.0}, # noqa: E501
{'model': nn.Conv2d(3, 8, 3), 'input': (3, 16, 16), 'flops': 43904.0, 'params': 224.0}, # noqa: E501
{'model': nn.Conv3d(3, 8, 3), 'input': (3, 3, 16, 16), 'flops': 128576.0, 'params': 656.0}, # noqa: E501
{'model': nn.ReLU(), 'input': (3, 16, 16), 'flops': 768.0, 'params': 0}, # noqa: E501
{'model': nn.PReLU(), 'input': (3, 16, 16), 'flops': 768.0, 'params': 1}, # noqa: E501
{'model': nn.ELU(), 'input': (3, 16, 16), 'flops': 768.0, 'params': 0}, # noqa: E501
{'model': nn.LeakyReLU(), 'input': (3, 16, 16), 'flops': 768.0, 'params': 0}, # noqa: E501
{'model': nn.ReLU6(), 'input': (3, 16, 16), 'flops': 768.0, 'params': 0}, # noqa: E501
{'model': nn.MaxPool1d(2), 'input': (3, 16), 'flops': 48.0, 'params': 0}, # noqa: E501
{'model': nn.MaxPool2d(2), 'input': (3, 16, 16), 'flops': 768.0, 'params': 0}, # noqa: E501
{'model': nn.MaxPool3d(2), 'input': (3, 3, 16, 16), 'flops': 2304.0, 'params': 0}, # noqa: E501
{'model': nn.AvgPool1d(2), 'input': (3, 16), 'flops': 48.0, 'params': 0}, # noqa: E501
{'model': nn.AvgPool2d(2), 'input': (3, 16, 16), 'flops': 768.0, 'params': 0}, # noqa: E501
{'model': nn.AvgPool3d(2), 'input': (3, 3, 16, 16), 'flops': 2304.0, 'params': 0}, # noqa: E501
{'model': nn.AdaptiveMaxPool1d(2), 'input': (3, 16), 'flops': 48.0, 'params': 0}, # noqa: E501
{'model': nn.AdaptiveMaxPool2d(2), 'input': (3, 16, 16), 'flops': 768.0, 'params': 0}, # noqa: E501
{'model': nn.AdaptiveMaxPool3d(2), 'input': (3, 3, 16, 16), 'flops': 2304.0, 'params': 0}, # noqa: E501
{'model': nn.AdaptiveAvgPool1d(2), 'input': (3, 16), 'flops': 48.0, 'params': 0}, # noqa: E501
{'model': nn.AdaptiveAvgPool2d(2), 'input': (3, 16, 16), 'flops': 768.0, 'params': 0}, # noqa: E501
{'model': nn.AdaptiveAvgPool3d(2), 'input': (3, 3, 16, 16), 'flops': 2304.0, 'params': 0}, # noqa: E501
{'model': nn.BatchNorm1d(3), 'input': (3, 16), 'flops': 96.0, 'params': 6.0}, # noqa: E501
{'model': nn.BatchNorm2d(3), 'input': (3, 16, 16), 'flops': 1536.0, 'params': 6.0}, # noqa: E501
{'model': nn.BatchNorm3d(3), 'input': (3, 3, 16, 16), 'flops': 4608.0, 'params': 6.0}, # noqa: E501
{'model': nn.GroupNorm(2, 6), 'input': (6, 16, 16), 'flops': 3072.0, 'params': 12.0}, # noqa: E501
{'model': nn.InstanceNorm1d(3, affine=True), 'input': (3, 16), 'flops': 96.0, 'params': 6.0}, # noqa: E501
{'model': nn.InstanceNorm2d(3, affine=True), 'input': (3, 16, 16), 'flops': 1536.0, 'params': 6.0}, # noqa: E501
{'model': nn.InstanceNorm3d(3, affine=True), 'input': (3, 3, 16, 16), 'flops': 4608.0, 'params': 6.0}, # noqa: E501
{'model': nn.LayerNorm((3, 16, 16)), 'input': (3, 16, 16), 'flops': 1536.0, 'params': 1536.0}, # noqa: E501
{'model': nn.LayerNorm((3, 16, 16), elementwise_affine=False), 'input': (3, 16, 16), 'flops': 768.0, 'params': 0}, # noqa: E501
{'model': nn.Linear(1024, 2), 'input': (1024, ), 'flops': 2048.0, 'params': 2050.0}, # noqa: E501
{'model': nn.ConvTranspose2d(3, 8, 3), 'input': (3, 16, 16), 'flops': 57888, 'params': 224.0}, # noqa: E501
{'model': nn.Upsample((32, 32)), 'input': (3, 16, 16), 'flops': 3072.0, 'params': 0} # noqa: E501
]
# yapf: enable
class ExampleModel(nn.Module):
def __init__(self):
super().__init__()
self.conv2d = nn.Conv2d(3, 8, 3)
def forward(self, imgs):
x = torch.randn((1, *imgs))
return self.conv2d(x)
def input_constructor(x):
return dict(imgs=x)
def test_flops_counter():
with pytest.raises(AssertionError):
# input_res should be a tuple
model = nn.Conv2d(3, 8, 3)
input_res = [1, 3, 16, 16]
get_model_complexity_info(model, input_res)
with pytest.raises(AssertionError):
# len(input_res) >= 2
model = nn.Conv2d(3, 8, 3)
input_res = tuple()
get_model_complexity_info(model, input_res)
# test common layers
for item in gt_results:
model = item['model']
input = item['input']
flops, params = get_model_complexity_info(
model, input, as_strings=False, print_per_layer_stat=False)
assert flops == item['flops'] and params == item['params']
# test input constructor
model = ExampleModel()
x = (3, 16, 16)
flops, params = get_model_complexity_info(
model,
x,
as_strings=False,
print_per_layer_stat=False,
input_constructor=input_constructor)
assert flops == 43904.0 and params == 224.0
# test output string
model = nn.Conv3d(3, 8, 3)
x = (3, 3, 512, 512)
flops, params = get_model_complexity_info(
model, x, print_per_layer_stat=False)
assert flops == '0.17 GFLOPs' and params == str(656)
# test print per layer status
model = nn.Conv1d(3, 8, 3)
x = (3, 16)
out = StringIO()
get_model_complexity_info(model, x, ost=out)
assert out.getvalue() == \
'Conv1d(0.0 M, 100.000% Params, 0.0 GFLOPs, 100.000% FLOPs, 3, 8, kernel_size=(3,), stride=(1,))\n' # noqa: E501
# test when model is not a common instance
model = nn.Sequential(nn.Conv2d(3, 8, 3), nn.Flatten(), nn.Linear(1568, 2))
x = (3, 16, 16)
flops, params = get_model_complexity_info(
model, x, as_strings=False, print_per_layer_stat=True)
assert flops == 47040.0 and params == 3362
def test_flops_to_string():
flops = 6.54321 * 10.**9
assert flops_to_string(flops) == '6.54 GFLOPs'
assert flops_to_string(flops, 'MFLOPs') == '6543.21 MFLOPs'
assert flops_to_string(flops, 'KFLOPs') == '6543210.0 KFLOPs'
assert flops_to_string(flops, 'FLOPs') == '6543210000.0 FLOPs'
assert flops_to_string(flops, precision=4) == '6.5432 GFLOPs'
flops = 6.54321 * 10.**9
assert flops_to_string(flops, None) == '6.54 GFLOPs'
flops = 3.21 * 10.**7
assert flops_to_string(flops, None) == '32.1 MFLOPs'
flops = 5.4 * 10.**3
assert flops_to_string(flops, None) == '5.4 KFLOPs'
flops = 987
assert flops_to_string(flops, None) == '987 FLOPs'
def test_params_to_string():
num_params = 3.21 * 10.**7
assert params_to_string(num_params) == '32.1 M'
num_params = 4.56 * 10.**5
assert params_to_string(num_params) == '456.0 k'
num_params = 7.89 * 10.**2
assert params_to_string(num_params) == '789.0'
num_params = 6.54321 * 10.**7
assert params_to_string(num_params, 'M') == '65.43 M'
assert params_to_string(num_params, 'K') == '65432.1 K'
assert params_to_string(num_params, '') == '65432100.0'
assert params_to_string(num_params, precision=4) == '65.4321 M'