Spaces:
Running
on
L40S
Running
on
L40S
# Copyright (c) OpenMMLab. All rights reserved. | |
import numpy as np | |
import pytest | |
import mmcv | |
def test_quantize(): | |
arr = np.random.randn(10, 10) | |
levels = 20 | |
qarr = mmcv.quantize(arr, -1, 1, levels) | |
assert qarr.shape == arr.shape | |
assert qarr.dtype == np.dtype('int64') | |
for i in range(arr.shape[0]): | |
for j in range(arr.shape[1]): | |
ref = min(levels - 1, | |
int(np.floor(10 * (1 + max(min(arr[i, j], 1), -1))))) | |
assert qarr[i, j] == ref | |
qarr = mmcv.quantize(arr, -1, 1, 20, dtype=np.uint8) | |
assert qarr.shape == arr.shape | |
assert qarr.dtype == np.dtype('uint8') | |
with pytest.raises(ValueError): | |
mmcv.quantize(arr, -1, 1, levels=0) | |
with pytest.raises(ValueError): | |
mmcv.quantize(arr, -1, 1, levels=10.0) | |
with pytest.raises(ValueError): | |
mmcv.quantize(arr, 2, 1, levels) | |
def test_dequantize(): | |
levels = 20 | |
qarr = np.random.randint(levels, size=(10, 10)) | |
arr = mmcv.dequantize(qarr, -1, 1, levels) | |
assert arr.shape == qarr.shape | |
assert arr.dtype == np.dtype('float64') | |
for i in range(qarr.shape[0]): | |
for j in range(qarr.shape[1]): | |
assert arr[i, j] == (qarr[i, j] + 0.5) / 10 - 1 | |
arr = mmcv.dequantize(qarr, -1, 1, levels, dtype=np.float32) | |
assert arr.shape == qarr.shape | |
assert arr.dtype == np.dtype('float32') | |
with pytest.raises(ValueError): | |
mmcv.dequantize(arr, -1, 1, levels=0) | |
with pytest.raises(ValueError): | |
mmcv.dequantize(arr, -1, 1, levels=10.0) | |
with pytest.raises(ValueError): | |
mmcv.dequantize(arr, 2, 1, levels) | |
def test_joint(): | |
arr = np.random.randn(100, 100) | |
levels = 1000 | |
qarr = mmcv.quantize(arr, -1, 1, levels) | |
recover = mmcv.dequantize(qarr, -1, 1, levels) | |
assert np.abs(recover[arr < -1] + 0.999).max() < 1e-6 | |
assert np.abs(recover[arr > 1] - 0.999).max() < 1e-6 | |
assert np.abs((recover - arr)[(arr >= -1) & (arr <= 1)]).max() <= 1e-3 | |
arr = np.clip(np.random.randn(100) / 1000, -0.01, 0.01) | |
levels = 99 | |
qarr = mmcv.quantize(arr, -1, 1, levels) | |
recover = mmcv.dequantize(qarr, -1, 1, levels) | |
assert np.all(recover == 0) | |