Spaces:
Sleeping
Sleeping
import torch | |
from torch.utils.data import DistributedSampler as _DistributedSampler | |
class DistributedSampler(_DistributedSampler): | |
def __init__(self, | |
dataset, | |
num_replicas=None, | |
rank=None, | |
shuffle=True, | |
round_up=True): | |
super().__init__(dataset, num_replicas=num_replicas, rank=rank) | |
self.shuffle = shuffle | |
self.round_up = round_up | |
if self.round_up: | |
self.total_size = self.num_samples * self.num_replicas | |
else: | |
self.total_size = len(self.dataset) | |
def __iter__(self): | |
# deterministically shuffle based on epoch | |
if self.shuffle: | |
g = torch.Generator() | |
g.manual_seed(self.epoch) | |
indices = torch.randperm(len(self.dataset), generator=g).tolist() | |
else: | |
indices = torch.arange(len(self.dataset)).tolist() | |
# add extra samples to make it evenly divisible | |
if self.round_up: | |
indices = ( | |
indices * | |
int(self.total_size / len(indices) + 1))[:self.total_size] | |
assert len(indices) == self.total_size | |
# subsample | |
indices = indices[self.rank:self.total_size:self.num_replicas] | |
if self.round_up: | |
assert len(indices) == self.num_samples | |
return iter(indices) | |