Spaces:
Sleeping
Sleeping
import os.path as osp | |
import cv2 | |
import mmcv | |
import numpy as np | |
from detrsmpl.data.data_structures.smc_reader import SMCReader | |
from ..builder import PIPELINES | |
class LoadImageFromFile(object): | |
"""Load an image from file. | |
Required keys are "img_prefix" and "img_info" (a dict that must contain the | |
key "filename"). Added or updated keys are "filename", "img", "img_shape", | |
"ori_shape" (same as `img_shape`) and "img_norm_cfg" (means=0 and stds=1). | |
Both "img_shape" and "ori_shape" use (height, width) convention. | |
Args: | |
to_float32 (bool): Whether to convert the loaded image to a float32 | |
numpy array. If set to False, the loaded image is an uint8 array. | |
Defaults to False. | |
color_type (str): The flag argument for :func:`mmcv.imfrombytes()`. | |
Defaults to 'color'. | |
file_client_args (dict): Arguments to instantiate a FileClient. | |
See :class:`mmcv.fileio.FileClient` for details. | |
Defaults to ``dict(backend='disk')``. | |
""" | |
def __init__(self, | |
to_float32=False, | |
color_type='color', | |
file_client_args=dict(backend='disk')): | |
self.to_float32 = to_float32 | |
self.color_type = color_type | |
self.file_client_args = file_client_args.copy() | |
self.file_client = None | |
def __call__(self, results): | |
if self.file_client is None: | |
self.file_client = mmcv.FileClient(**self.file_client_args) | |
if results['img_prefix'] is not None: | |
filename = osp.join(results['img_prefix'], results['image_path']) | |
else: | |
filename = results['image_path'] | |
if filename.endswith('smc'): | |
assert 'image_id' in results, 'Load image from .smc, ' \ | |
'but image_id is not provided.' | |
device, device_id, frame_id = results['image_id'] | |
smc_reader = SMCReader(filename) | |
img = smc_reader.get_color(device, | |
device_id, | |
frame_id, | |
disable_tqdm=True) | |
img = img.squeeze() # (1, H, W, 3) -> (H, W, 3) | |
img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR) # BGR is used | |
del smc_reader | |
else: | |
img_bytes = self.file_client.get(filename) | |
img = mmcv.imfrombytes(img_bytes, flag=self.color_type) | |
if self.to_float32: | |
img = img.astype(np.float32) | |
results['filename'] = filename | |
results['ori_filename'] = results['image_path'] | |
results['img'] = img | |
results['img_shape'] = img.shape[:2] | |
results['ori_shape'] = img.shape[:2] | |
num_channels = 1 if len(img.shape) < 3 else img.shape[2] | |
results['img_norm_cfg'] = dict(mean=np.zeros(num_channels, | |
dtype=np.float32), | |
std=np.ones(num_channels, | |
dtype=np.float32), | |
to_rgb=False) | |
return results | |
def __repr__(self): | |
repr_str = (f'{self.__class__.__name__}(' | |
f'to_float32={self.to_float32}, ' | |
f"color_type='{self.color_type}', " | |
f'file_client_args={self.file_client_args})') | |
return repr_str | |