Spaces:
Starting
on
L40S
Starting
on
L40S
import platform | |
import random | |
from functools import partial | |
from typing import Optional, Union | |
import numpy as np | |
from mmcv.parallel import collate | |
from mmcv.runner import get_dist_info | |
from mmcv.utils import Registry, build_from_cfg | |
from torch.utils.data import DataLoader | |
from torch.utils.data.dataset import Dataset | |
from .samplers import DistributedSampler | |
if platform.system() != 'Windows': | |
# https://github.com/pytorch/pytorch/issues/973 | |
import resource | |
rlimit = resource.getrlimit(resource.RLIMIT_NOFILE) | |
base_soft_limit = rlimit[0] | |
hard_limit = rlimit[1] | |
soft_limit = min(max(4096, base_soft_limit), hard_limit) | |
resource.setrlimit(resource.RLIMIT_NOFILE, (soft_limit, hard_limit)) | |
DATASETS = Registry('dataset') | |
PIPELINES = Registry('pipeline') | |
def build_dataset(cfg: Union[dict, list, tuple], | |
default_args: Optional[Union[dict, None]] = None): | |
""""Build dataset by the given config.""" | |
from .dataset_wrappers import ( | |
ConcatDataset, | |
RepeatDataset, | |
) | |
if isinstance(cfg, (list, tuple)): | |
dataset = ConcatDataset([build_dataset(c, default_args) for c in cfg]) | |
elif cfg['type'] == 'RepeatDataset': | |
dataset = RepeatDataset(build_dataset(cfg['dataset'], default_args), | |
cfg['times']) | |
else: | |
dataset = build_from_cfg(cfg, DATASETS, default_args) | |
return dataset | |
def build_dataloader(dataset: Dataset, | |
samples_per_gpu: int, | |
workers_per_gpu: int, | |
num_gpus: Optional[int] = 1, | |
dist: Optional[bool] = True, | |
shuffle: Optional[bool] = True, | |
round_up: Optional[bool] = True, | |
seed: Optional[Union[int, None]] = None, | |
persistent_workers: Optional[bool] = True, | |
**kwargs): | |
"""Build PyTorch DataLoader. | |
In distributed training, each GPU/process has a dataloader. | |
In non-distributed training, there is only one dataloader for all GPUs. | |
Args: | |
dataset (:obj:`Dataset`): A PyTorch dataset. | |
samples_per_gpu (int): Number of training samples on each GPU, i.e., | |
batch size of each GPU. | |
workers_per_gpu (int): How many subprocesses to use for data loading | |
for each GPU. | |
num_gpus (int, optional): Number of GPUs. Only used in non-distributed | |
training. | |
dist (bool, optional): Distributed training/test or not. Default: True. | |
shuffle (bool, optional): Whether to shuffle the data at every epoch. | |
Default: True. | |
round_up (bool, optional): Whether to round up the length of dataset by | |
adding extra samples to make it evenly divisible. Default: True. | |
persistent_workers (bool): If True, the data loader will not shutdown | |
the worker processes after a dataset has been consumed once. | |
This allows to maintain the workers Dataset instances alive. | |
The argument also has effect in PyTorch>=1.7.0. | |
Default: True | |
kwargs: any keyword argument to be used to initialize DataLoader | |
Returns: | |
DataLoader: A PyTorch dataloader. | |
""" | |
rank, world_size = get_dist_info() | |
if dist: | |
sampler = DistributedSampler(dataset, | |
world_size, | |
rank, | |
shuffle=shuffle, | |
round_up=round_up) | |
shuffle = False | |
batch_size = samples_per_gpu | |
num_workers = workers_per_gpu | |
else: | |
sampler = None | |
batch_size = num_gpus * samples_per_gpu | |
num_workers = num_gpus * workers_per_gpu | |
init_fn = partial( | |
worker_init_fn, num_workers=num_workers, rank=rank, | |
seed=seed) if seed is not None else None | |
data_loader = DataLoader(dataset, | |
batch_size=batch_size, | |
sampler=sampler, | |
num_workers=num_workers, | |
collate_fn=partial( | |
collate, samples_per_gpu=samples_per_gpu), | |
pin_memory=False, | |
shuffle=shuffle, | |
worker_init_fn=init_fn, | |
persistent_workers=persistent_workers, | |
**kwargs) | |
return data_loader | |
def worker_init_fn(worker_id: int, num_workers: int, rank: int, seed: int): | |
"""Init random seed for each worker.""" | |
# The seed of each worker equals to | |
# num_worker * rank + worker_id + user_seed | |
worker_seed = num_workers * rank + worker_id + seed | |
np.random.seed(worker_seed) | |
random.seed(worker_seed) | |