Spaces:
Sleeping
Sleeping
File size: 7,689 Bytes
d7e58f0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 |
# Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. (MPG) is
# holder of all proprietary rights on this computer program.
# You can only use this computer program if you have closed
# a license agreement with MPG or you get the right to use the computer
# program from someone who is authorized to grant you that right.
# Any use of the computer program without a valid license is prohibited and
# liable to prosecution.
#
# Copyright©2019 Max-Planck-Gesellschaft zur Förderung
# der Wissenschaften e.V. (MPG). acting on behalf of its Max Planck Institute
# for Intelligent Systems. All rights reserved.
#
# Contact: [email protected]
import os.path as osp
import argparse
import numpy as np
import torch
import smplx
def main(model_folder,
model_type='smplx',
ext='npz',
gender='neutral',
plot_joints=False,
num_betas=10,
sample_shape=True,
sample_expression=True,
num_expression_coeffs=10,
plotting_module='pyrender',
use_face_contour=False):
model = smplx.create(model_folder,
model_type=model_type,
gender=gender,
use_face_contour=use_face_contour,
num_betas=num_betas,
num_expression_coeffs=num_expression_coeffs,
ext=ext)
print(model)
betas, expression = None, None
if sample_shape:
betas = torch.randn([1, model.num_betas], dtype=torch.float32)
if sample_expression:
expression = torch.randn([1, model.num_expression_coeffs],
dtype=torch.float32)
output = model(betas=betas, expression=expression, return_verts=True)
vertices = output.vertices.detach().cpu().numpy().squeeze()
joints = output.joints.detach().cpu().numpy().squeeze()
print('Vertices shape =', vertices.shape)
print('Joints shape =', joints.shape)
if plotting_module == 'pyrender':
import pyrender
import trimesh
vertex_colors = np.ones([vertices.shape[0], 4]) * [0.3, 0.3, 0.3, 0.8]
tri_mesh = trimesh.Trimesh(vertices,
model.faces,
vertex_colors=vertex_colors)
mesh = pyrender.Mesh.from_trimesh(tri_mesh)
scene = pyrender.Scene()
scene.add(mesh)
if plot_joints:
sm = trimesh.creation.uv_sphere(radius=0.005)
sm.visual.vertex_colors = [0.9, 0.1, 0.1, 1.0]
tfs = np.tile(np.eye(4), (len(joints), 1, 1))
tfs[:, :3, 3] = joints
joints_pcl = pyrender.Mesh.from_trimesh(sm, poses=tfs)
scene.add(joints_pcl)
pyrender.Viewer(scene, use_raymond_lighting=True)
elif plotting_module == 'matplotlib':
from matplotlib import pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
from mpl_toolkits.mplot3d.art3d import Poly3DCollection
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
mesh = Poly3DCollection(vertices[model.faces], alpha=0.1)
face_color = (1.0, 1.0, 0.9)
edge_color = (0, 0, 0)
mesh.set_edgecolor(edge_color)
mesh.set_facecolor(face_color)
ax.add_collection3d(mesh)
ax.scatter(joints[:, 0], joints[:, 1], joints[:, 2], color='r')
if plot_joints:
ax.scatter(joints[:, 0], joints[:, 1], joints[:, 2], alpha=0.1)
plt.show()
elif plotting_module == 'open3d':
import open3d as o3d
mesh = o3d.geometry.TriangleMesh()
mesh.vertices = o3d.utility.Vector3dVector(vertices)
mesh.triangles = o3d.utility.Vector3iVector(model.faces)
mesh.compute_vertex_normals()
mesh.paint_uniform_color([0.3, 0.3, 0.3])
geometry = [mesh]
if plot_joints:
joints_pcl = o3d.geometry.PointCloud()
joints_pcl.points = o3d.utility.Vector3dVector(joints)
joints_pcl.paint_uniform_color([0.7, 0.3, 0.3])
geometry.append(joints_pcl)
o3d.visualization.draw_geometries(geometry)
else:
raise ValueError('Unknown plotting_module: {}'.format(plotting_module))
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='SMPL-X Demo')
parser.add_argument('--model-folder',
required=True,
type=str,
help='The path to the model folder')
parser.add_argument('--model-type',
default='smplx',
type=str,
choices=['smpl', 'smplh', 'smplx', 'mano', 'flame'],
help='The type of model to load')
parser.add_argument('--gender',
type=str,
default='neutral',
help='The gender of the model')
parser.add_argument('--num-betas',
default=10,
type=int,
dest='num_betas',
help='Number of shape coefficients.')
parser.add_argument('--num-expression-coeffs',
default=10,
type=int,
dest='num_expression_coeffs',
help='Number of expression coefficients.')
parser.add_argument('--plotting-module',
type=str,
default='pyrender',
dest='plotting_module',
choices=['pyrender', 'matplotlib', 'open3d'],
help='The module to use for plotting the result')
parser.add_argument('--ext',
type=str,
default='npz',
help='Which extension to use for loading')
parser.add_argument('--plot-joints',
default=False,
type=lambda arg: arg.lower() in ['true', '1'],
help='The path to the model folder')
parser.add_argument('--sample-shape',
default=True,
dest='sample_shape',
type=lambda arg: arg.lower() in ['true', '1'],
help='Sample a random shape')
parser.add_argument('--sample-expression',
default=True,
dest='sample_expression',
type=lambda arg: arg.lower() in ['true', '1'],
help='Sample a random expression')
parser.add_argument('--use-face-contour',
default=False,
type=lambda arg: arg.lower() in ['true', '1'],
help='Compute the contour of the face')
args = parser.parse_args()
model_folder = osp.expanduser(osp.expandvars(args.model_folder))
model_type = args.model_type
plot_joints = args.plot_joints
use_face_contour = args.use_face_contour
gender = args.gender
ext = args.ext
plotting_module = args.plotting_module
num_betas = args.num_betas
num_expression_coeffs = args.num_expression_coeffs
sample_shape = args.sample_shape
sample_expression = args.sample_expression
main(model_folder,
model_type,
ext=ext,
gender=gender,
plot_joints=plot_joints,
num_betas=num_betas,
num_expression_coeffs=num_expression_coeffs,
sample_shape=sample_shape,
sample_expression=sample_expression,
plotting_module=plotting_module,
use_face_contour=use_face_contour)
|