File size: 36,992 Bytes
d7e58f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
import numpy as np
import cv2
import random
from config.config import cfg
import math
from .human_models import smpl_x, smpl
from .transforms import cam2pixel, transform_joint_to_other_db, transform_joint_to_other_db_batch
from plyfile import PlyData, PlyElement
import torch
import torch.distributed as dist

def load_img(path, order='RGB'):
    img = cv2.imread(path, cv2.IMREAD_COLOR | cv2.IMREAD_IGNORE_ORIENTATION)
    if not isinstance(img, np.ndarray):
        raise IOError('Fail to read %s' % path)

    if order == 'RGB':
        img = img[:, :, ::-1].copy()

    img = img.astype(np.float32)
    return img


def get_bbox(joint_img, joint_valid, extend_ratio=1.2):
    x_img, y_img = joint_img[:, 0], joint_img[:, 1]
    x_img = x_img[joint_valid == 1]
    y_img = y_img[joint_valid == 1]
    xmin = min(x_img)
    ymin = min(y_img)
    xmax = max(x_img)
    ymax = max(y_img)

    x_center = (xmin + xmax) / 2.
    width = xmax - xmin
    xmin = x_center - 0.5 * width * extend_ratio
    xmax = x_center + 0.5 * width * extend_ratio

    y_center = (ymin + ymax) / 2.
    height = ymax - ymin
    ymin = y_center - 0.5 * height * extend_ratio
    ymax = y_center + 0.5 * height * extend_ratio

    bbox = np.array([xmin, ymin, xmax - xmin, ymax - ymin]).astype(np.float32)
    return bbox


def sanitize_bbox(bbox, img_width, img_height):
    x, y, w, h = bbox
    x1 = np.max((0, x))
    y1 = np.max((0, y))
    x2 = np.min((img_width - 1, x1 + np.max((0, w - 1))))
    y2 = np.min((img_height - 1, y1 + np.max((0, h - 1))))
    if w > 0 and h > 0 and x2 >= x1 and y2 >= y1:
        bbox = np.array([x1, y1, x2 - x1 + 1, y2 - y1 + 1])
    else:
        bbox = None

    return bbox
def resize(ori_shape, size, max_size=None):
    # size can be min_size (scalar) or (w, h) tuple
    # import ipdb; ipdb.set_trace(context=15)
    def get_size_with_aspect_ratio(image_size, size, max_size=None):
        w, h = image_size
        if max_size is not None:
            min_original_size = float(min((w, h)))
            max_original_size = float(max((w, h)))
            if min_original_size ==0:
                print('min_original_size:',min_original_size)
            if max_original_size / (min_original_size) * size > max_size:
                size = int(round(max_size * min_original_size / max_original_size))

        if (w <= h and w == size) or (h <= w and h == size):
            return (w, h)

        if w < h:
            ow = size
            oh = int(size * h / w)
        else:
            oh = size
            ow = int(size * w / h)

        return (ow, oh)

    def get_size(ori_shape, size, max_size=None):
        if isinstance(size, (list, tuple)):
            return size[::-1]
        else:
            return get_size_with_aspect_ratio(ori_shape, size, max_size)

    size = get_size(ori_shape, size, max_size)

    
    return size

def process_bbox(bbox, img_width, img_height, ratio=1.):
    
    bbox = np.array(bbox, dtype=np.float32)
    # aspect ratio preserving bbox
    w = bbox[2]
    h = bbox[3]
    c_x = bbox[0] + w / 2.
    c_y = bbox[1] + h / 2.
    bbox[2] = w * ratio
    bbox[3] = h * ratio
    bbox[0] = c_x - bbox[2] / 2.
    bbox[1] = c_y - bbox[3] / 2.

    bbox = sanitize_bbox(bbox, img_width, img_height)    
    return bbox


def get_aug_config(data_name):
    scale_factor = 0.25
    rot_factor = 30
    color_factor = 0.2
    crop_factor = 0.1
    
    if data_name == 'GTA_Human2':
        sample_ratio = 0.5
        sample_prob = 0.5
    elif data_name == 'AGORA_MM':
        sample_ratio = 0.5
        sample_prob = 0.7
    elif data_name == 'BEDLAM':
        sample_ratio = 0.6
        sample_prob = 0.7 
    elif data_name == 'Synbody':
        sample_ratio = 0.6
        sample_prob = 0.7 
    elif data_name == 'COCO_NA':
        sample_ratio = 0.6
        sample_prob = 0.7
    elif data_name == 'CrowdPose':
        sample_ratio = 0.5
        sample_prob = 0.5
    elif data_name == 'PoseTrack':
        sample_ratio = 0.5
        sample_prob = 0.3
    elif data_name == 'UBody_MM':
        sample_ratio = 0.5
        sample_prob = 0.3        
    elif data_name == 'ARCTIC':
        sample_ratio = 0.5
        sample_prob = 0.3
    elif data_name == 'RICH':
        sample_ratio = 0.5
        sample_prob = 0.3
    elif data_name == 'EgoBody_Egocentric':
        sample_ratio = 0.5
        sample_prob = 0.3
    elif data_name == 'EgoBody_Kinect':
        sample_ratio = 0.5
        sample_prob = 0.3
    else:
        sample_ratio = 0.5
        sample_prob = 0.3
    scale = np.clip(np.random.randn(), -1.0, 1.0) * scale_factor + 1.0
    rot = np.clip(np.random.randn(), -2.0,
                  2.0) * rot_factor if random.random() <= 0.6 else 0
    c_up = 1.0 + color_factor
    c_low = 1.0 - color_factor
    color_scale = np.array([
        random.uniform(c_low, c_up),
        random.uniform(c_low, c_up),
        random.uniform(c_low, c_up)
    ])
    do_flip = random.random() < 0.5
    crop_hw = np.array([
        0.2 - np.random.rand() * crop_factor, 0.2 - np.random.rand() * crop_factor
    ])
    # crop_hw = np.array([
    #     0.3 - np.random.rand() * crop_factor, 0.3 - np.random.rand() * crop_factor
    # ])
    return scale, rot, color_scale, do_flip, crop_hw, sample_ratio, sample_prob

def augmentation_keep_size(img, bbox, data_split):
    ori_shape = img.shape[:2][::-1]
    if getattr(cfg, 'no_aug', False) and data_split == 'train':
        scale, rot, color_scale, do_flip,size,crop = 1.0, 0.0, np.array([1, 1, 1]), False, ori_shape, np.array([1,1])
        
        size = random.choice(cfg.train_sizes)
        max_size = cfg.train_max_size
    elif data_split == 'train':
        scale, rot, color_scale, do_flip, crop = get_aug_config()
        rot=0
        # scale, rot, do_flip, crop = 1.0, 0.0, False, np.array([1,1])
        size = random.choice(cfg.train_sizes)
        max_size = cfg.train_max_size
    else:
        scale, rot, color_scale, do_flip, crop = 1.0, 0.0, np.array([1, 1, 1]), False, np.array([1,1])
        size = random.choice(cfg.test_sizes)
        max_size = cfg.test_max_size
    
    crop_bbox_wh = (bbox[2:]*crop).astype(np.uint32)
    xy_range = img.shape[:2][::-1]-crop_bbox_wh
    crop_bbox_xywh = np.array([np.random.randint(0,xy_range[0]+1),np.random.randint(0,xy_range[1]+1),crop_bbox_wh[0],crop_bbox_wh[1]])
    reshape_size = resize(crop_bbox_xywh[2:], size, max_size)
    
    img, trans, inv_trans = generate_patch_image(img, crop_bbox_xywh, 1, rot, do_flip, reshape_size[::-1])
    img = np.clip(img * color_scale[None, None, :], 0, 255)
    return img, trans, inv_trans, rot, do_flip

def augmentation_instance_sample(img, bbox, data_split,data,dataname):
    ori_shape = img.shape[:2][::-1]
    
    if getattr(cfg, 'no_aug', False) and data_split == 'train':
        scale, rot, color_scale, do_flip,size,crop,sample_ratio,sample_prob = 1.0, 0.0, np.array([1, 1, 1]), False, ori_shape, np.array([1,1]), 0,0
        
        size = random.choice(cfg.train_sizes)
        max_size = cfg.train_max_size
    elif data_split == 'train':
        scale, rot, color_scale, do_flip, crop, sample_ratio,sample_prob = get_aug_config(dataname)
        rot=0
        # scale, rot, do_flip, crop = 1.0, 0.0, False, np.array([1,1])
        size = random.choice(cfg.train_sizes)
        max_size = cfg.train_max_size
    else:
        scale, rot, color_scale, do_flip, crop,sample_ratio,sample_prob = 1.0, 0.0, np.array([1, 1, 1]), False, np.array([1,1]),0,0
        size = random.choice(cfg.test_sizes)
        max_size = cfg.test_max_size
    
    
    if random.random() < sample_prob:
        crop_person_number = len(data['bbox'])
        
        if random.random() < sample_ratio:
            if random.random() < 0.6:
                crop_person_number_sample = 1
            else:
                crop_person_number_sample = np.random.randint(crop_person_number) + 1
        else:
            crop_person_number_sample = crop_person_number
        sample_ids = np.array(
            random.sample(list(range(crop_person_number)), crop_person_number_sample))
        
        bbox_xyxy = []

        bbox_xyxy = np.stack(data['bbox'],axis=0)[sample_ids]

        leftTop_ = bbox_xyxy[:, :2]
        leftTop_ = np.array([np.min(leftTop_[:, 0]), np.min(leftTop_[:, 1])])
        rightBottom_ = bbox_xyxy[:, 2:4]
        rightBottom_ = np.array(
            [np.max(rightBottom_[:, 0]),
                np.max(rightBottom_[:, 1])])
        crop_bbox_xyxy = np.concatenate([leftTop_, rightBottom_])
        crop_bbox_xywh = crop_bbox_xyxy.copy()
        crop_bbox_xywh[2:] = crop_bbox_xywh[2:]-crop_bbox_xywh[:2]
        crop_bbox_xywh = adjust_bounding_box(crop_bbox_xywh,ori_shape[0],ori_shape[1])
    else:
        crop_bbox_xywh = bbox.copy()
    reshape_size = resize(crop_bbox_xywh[2:], size, max_size)
    # try:
    #     reshape_size = resize(crop_bbox_xywh[2:], size, max_size)
    # except Exception as e:
    #     print(crop_bbox_xywh)
    #     print(size)
    #     print(max_size)
    #     raise e
    img, trans, inv_trans = generate_patch_image(img, crop_bbox_xywh, 1, rot, do_flip, reshape_size[::-1])
    img = np.clip(img * color_scale[None, None, :], 0, 255)
    return img, trans, inv_trans, rot, do_flip

def adjust_bounding_box(input_bbox,image_width, image_height):
    left_x, left_y, width, height = input_bbox
    # Calculate original bounding box center
    original_center_x = left_x + width / 2
    original_center_y = left_y + height / 2

    # Calculate target aspect ratio
    target_aspect_ratio = image_width / image_height

    # Adjust width and height to match target aspect ratio
    if width / height > target_aspect_ratio:
        # Bounding box is wider, adjust height
        new_height = width / target_aspect_ratio
        new_width = width
    else:
        # Bounding box is taller, adjust width
        new_width = height * target_aspect_ratio
        new_height = height

    # Calculate new bounding box center
    new_center_x = original_center_x
    new_center_y = original_center_y

    # Check if the adjusted bounding box is out of the image boundaries
    if new_center_x - new_width / 2 < 0:
        # Shift the bounding box to the right to fit within the image
        new_center_x = new_width / 2
    elif new_center_x + new_width / 2 > image_width:
        # Shift the bounding box to the left to fit within the image
        new_center_x = image_width - new_width / 2

    if new_center_y - new_height / 2 < 0:
        # Shift the bounding box down to fit within the image
        new_center_y = new_height / 2
    elif new_center_y + new_height / 2 > image_height:
        # Shift the bounding box up to fit within the image
        new_center_y = image_height - new_height / 2

    # Calculate adjusted left x and left y of the bounding box and convert to integers
    adjusted_left_x = int(new_center_x - new_width / 2)
    adjusted_left_y = int(new_center_y - new_height / 2)
    # Ensure width and height are integers as well
    adjusted_width = int(new_width)
    adjusted_height = int(new_height)

    # Return adjusted bounding box coordinates (left x, left y, width, height)
    return np.array([adjusted_left_x, adjusted_left_y, adjusted_width, adjusted_height])


def generate_patch_image(cvimg, bbox, scale, rot, do_flip, out_shape):
    img = cvimg.copy()
    
    img_height, img_width, img_channels = img.shape

    bb_c_x = float(bbox[0] + 0.5 * bbox[2])
    bb_c_y = float(bbox[1] + 0.5 * bbox[3])
    bb_width = float(bbox[2])
    bb_height = float(bbox[3])

    if do_flip:
        img = img[:, ::-1, :]
        bb_c_x = img_width - bb_c_x - 1

    trans = gen_trans_from_patch_cv(bb_c_x, bb_c_y, bb_width, bb_height,
                                    out_shape[1], out_shape[0], scale, rot)
    img_patch = cv2.warpAffine(img,
                               trans, (int(out_shape[1]), int(out_shape[0])),
                               flags=cv2.INTER_LINEAR)
    img_patch = img_patch.astype(np.float32)
    inv_trans = gen_trans_from_patch_cv(bb_c_x,
                                        bb_c_y,
                                        bb_width,
                                        bb_height,
                                        out_shape[1],
                                        out_shape[0],
                                        scale,
                                        rot,
                                        inv=True)

    return img_patch, trans, inv_trans


def rotate_2d(pt_2d, rot_rad):
    x = pt_2d[0]
    y = pt_2d[1]
    sn, cs = np.sin(rot_rad), np.cos(rot_rad)
    xx = x * cs - y * sn
    yy = x * sn + y * cs
    return np.array([xx, yy], dtype=np.float32)


def gen_trans_from_patch_cv(c_x,
                            c_y,
                            src_width,
                            src_height,
                            dst_width,
                            dst_height,
                            scale,
                            rot,
                            inv=False):
    # augment size with scale
    src_w = src_width * scale
    src_h = src_height * scale
    src_center = np.array([c_x, c_y], dtype=np.float32)

    # augment rotation
    rot_rad = np.pi * rot / 180
    src_downdir = rotate_2d(np.array([0, src_h * 0.5], dtype=np.float32),
                            rot_rad)
    src_rightdir = rotate_2d(np.array([src_w * 0.5, 0], dtype=np.float32),
                             rot_rad)

    dst_w = dst_width
    dst_h = dst_height
    dst_center = np.array([dst_w * 0.5, dst_h * 0.5], dtype=np.float32)
    dst_downdir = np.array([0, dst_h * 0.5], dtype=np.float32)
    dst_rightdir = np.array([dst_w * 0.5, 0], dtype=np.float32)

    src = np.zeros((3, 2), dtype=np.float32)
    src[0, :] = src_center
    src[1, :] = src_center + src_downdir
    src[2, :] = src_center + src_rightdir

    dst = np.zeros((3, 2), dtype=np.float32)
    dst[0, :] = dst_center
    dst[1, :] = dst_center + dst_downdir
    dst[2, :] = dst_center + dst_rightdir

    if inv:
        trans = cv2.getAffineTransform(np.float32(dst), np.float32(src))
    else:
        trans = cv2.getAffineTransform(np.float32(src), np.float32(dst))

    trans = trans.astype(np.float32)
    return trans


def process_db_coord_batch_no_valid(joint_img, joint_cam, do_flip,
                           img_shape, flip_pairs, img2bb_trans, rot,
                           src_joints_name, target_joints_name,
                           input_img_shape):
    joint_img_original = joint_img.copy()
    joint_img, joint_cam = joint_img.copy(), joint_cam.copy()
    
    # flip augmentation
    if do_flip:
        joint_cam[:, :, 0] = -joint_cam[:, :, 0]
        joint_img[:, :, 0] = img_shape[1] - 1 - joint_img[:, :, 0]
        for pair in flip_pairs:
            joint_img[:, pair[0], :], joint_img[:, pair[
                1], :] = joint_img[:, pair[1], :].copy(
                ), joint_img[:, pair[0], :].copy()
            joint_cam[:, pair[0], :], joint_cam[:, pair[
                1], :] = joint_cam[:, pair[1], :].copy(
                ), joint_cam[:, pair[0], :].copy()
            
    # 3D data rotation augmentation
    rot_aug_mat = np.array(
        [[np.cos(np.deg2rad(-rot)), -np.sin(np.deg2rad(-rot)), 0],
         [np.sin(np.deg2rad(-rot)),
          np.cos(np.deg2rad(-rot)), 0], [0, 0, 1]],
        dtype=np.float32)
    num_p, num_joints, joints_dim = joint_cam.shape
    joint_cam = joint_cam.reshape(num_p * num_joints, joints_dim)
    joint_cam[:,:-1] = np.dot(rot_aug_mat, joint_cam[:,:-1].transpose(1, 0)).transpose(1, 0)
    joint_cam = joint_cam.reshape(num_p, num_joints, joints_dim)
    
    # affine transformation
    joint_img_xy1 = \
        np.concatenate((joint_img[:, :, :2], np.ones_like(joint_img[:, :, :1])), 2)
    joint_img_xy1 = joint_img_xy1.reshape(num_p * num_joints, 3)

    joint_img[:, :, :2] = np.dot(img2bb_trans,
                                 joint_img_xy1.transpose(1, 0)).transpose(
                                     1, 0).reshape(num_p, num_joints, 2)

    joint_img[:, :,
              0] = joint_img[:, :,
                             0] / input_img_shape[1] * cfg.output_hm_shape[2]
    joint_img[:, :,
              1] = joint_img[:, :,
                             1] / input_img_shape[0] * cfg.output_hm_shape[1]

    # check truncation
    # TODO
    # remove 3rd 
    joint_trunc =  ((joint_img_original[:,:, 0] >= 0) * (joint_img[:,:, 0] >= 0) * (joint_img[:,:, 0] < cfg.output_hm_shape[2]) * \
                    (joint_img_original[:,:, 1] >= 0) *(joint_img[:,:, 1] >= 0) * (joint_img[:,:, 1] < cfg.output_hm_shape[1]) * \
                    joint_img[:,:, -1]
                    ).reshape(num_p, -1, 1).astype(np.float32)


    # transform joints to target db joints

    joint_img = transform_joint_to_other_db_batch(joint_img, src_joints_name,
                                                  target_joints_name)
    joint_cam_wo_ra = transform_joint_to_other_db_batch(
        joint_cam, src_joints_name, target_joints_name)
    
    joint_trunc = transform_joint_to_other_db_batch(joint_trunc,
                                                    src_joints_name,
                                                    target_joints_name)

    # root-alignment, for joint_cam input wo ra
    joint_cam_ra = joint_cam_wo_ra.copy()
    joint_cam_ra[:,:,:3] = joint_cam_ra[:,:,:3] - joint_cam_ra[:, smpl_x.root_joint_idx,
                                               None, :3]  # root-relative
    joint_cam_ra[:, smpl_x.joint_part[
        'lhand'], :3] = joint_cam_ra[:, smpl_x.joint_part[
            'lhand'], :3] - joint_cam_ra[:, smpl_x.lwrist_idx,
                                        None, :3]  # left hand root-relative
    joint_cam_ra[:, smpl_x.joint_part[
        'rhand'], :3] = joint_cam_ra[:, smpl_x.joint_part[
            'rhand'], :3] - joint_cam_ra[:, smpl_x.rwrist_idx,
                                        None, :3]  # right hand root-relative
    joint_cam_ra[:, smpl_x.
                 joint_part['face'], :3] = joint_cam_ra[:, smpl_x.joint_part[
                     'face'], :3] - joint_cam_ra[:, smpl_x.neck_idx,
                                                None, :3]  # face root-relative
    return joint_img, joint_cam_wo_ra, joint_cam_ra, joint_trunc



def process_human_model_output_batch_ubody(human_model_param,
                                     do_flip,
                                     rot,
                                     as_smplx,
                                     part_valid
                                     ):
    num_person = human_model_param['body_pose'].shape[0]
    human_model = smpl_x
    rotation_valid = np.ones((num_person,smpl_x.orig_joint_num), dtype=np.float32)
    coord_valid = np.ones((num_person,smpl_x.joint_num), dtype=np.float32)
    # expr_valid = np.ones((num_person), dtype=np.float32)
    # shape_valid = np.ones((num_person), dtype=np.float32)
    # root_pose, body_pose, shape, trans = human_model_param['root_pose'], human_model_param['body_pose'], \
    #                                         human_model_param['shape'], human_model_param['trans']
    
    if 'smplx_valid' in human_model_param:
        smplx_valid = human_model_param['smplx_valid']
        shape_valid = human_model_param['smplx_valid']
    else:
        smplx_valid = np.ones(num_person, dtype=np.bool8)
        shape_valid = np.ones(num_person, dtype=np.bool8)

    if 'expr_valid' in human_model_param:
        expr_valid = human_model_param['expr_valid']
    else:
        expr_valid = np.ones(num_person, dtype=np.bool8)
    expr_valid*=smplx_valid

    if 'face_valid' in human_model_param:
        face_valid = human_model_param['face_valid']
    else:
        face_valid = np.ones(num_person, dtype=np.bool8)
    face_valid *= smplx_valid

    # check lhand valid key exsits
    if 'lhand_valid' in human_model_param:  
        lhand_valid = human_model_param['lhand_valid']
    else:
        lhand_valid = np.ones(num_person, dtype=np.bool8)
    lhand_valid*=smplx_valid
    
    # check rhand valid key exsits
    if 'rhand_valid' in human_model_param:
        rhand_valid = human_model_param['rhand_valid']
    else:
        rhand_valid = np.ones(num_person, dtype=np.bool8)
    rhand_valid*=smplx_valid
    
    # check validation of the smplx parameters
    if 'body_pose' in human_model_param \
        and human_model_param['body_pose'] is not None:
        root_pose, body_pose = human_model_param['root_pose'], human_model_param['body_pose']
        shape, trans = human_model_param['shape'], human_model_param['trans']
        root_pose = torch.FloatTensor(root_pose).view(num_person, 1, 3)
        body_pose = torch.FloatTensor(body_pose).view(num_person, -1, 3)
        shape = torch.FloatTensor(shape).view(num_person, -1)
        trans = torch.FloatTensor(trans).view(num_person,-1)
    else:
        root_pose = np.zeros((num_person, 3), dtype=np.float32)
        body_pose = np.zeros((num_person, 3 * len(smpl_x.orig_joint_part['body'])), dtype=np.float32)
        shape = np.zeros((num_person, 10), dtype=np.float32)
        trans = np.zeros((num_person, 3), dtype=np.float32)
        rotation_valid[:, smpl_x.orig_joint_part['body']] = 0
        coord_valid[:, smpl_x.joint_part['body']] = 0
    body_pose*=smplx_valid[:, None, None]
    root_pose*=smplx_valid[:, None, None]
    shape*=smplx_valid[:, None]
    trans*=smplx_valid[:, None]
    rotation_valid[:, smpl_x.orig_joint_part['body']]*=smplx_valid[:,None]   
    coord_valid[:, smpl_x.joint_part['body']]*=smplx_valid[:,None]  
    
    # check validation of the smplx parameters
    if 'lhand_pose' in human_model_param \
        and human_model_param['lhand_pose'] is not None:
        lhand_pose = human_model_param['lhand_pose']
        lhand_pose = torch.FloatTensor(lhand_pose).view(num_person, -1, 3)
        # lhand_valid = part_valid['lhand']
        # rotation_valid[:, smpl_x.orig_joint_part['lhand']]*=lhand_valid[:,None]
        # coord_valid[:, smpl_x.joint_part['lhand']]*=lhand_valid[:,None]
    else:
        lhand_pose = np.zeros((num_person, 3 * len(smpl_x.orig_joint_part['lhand'])), dtype=np.float32)
        rotation_valid[:, smpl_x.orig_joint_part['lhand']] = 0
        coord_valid[:, smpl_x.joint_part['lhand']] = 0
    
    lhand_pose*=lhand_valid[:,None,None]    
    rotation_valid[:, smpl_x.orig_joint_part['lhand']]*=lhand_valid[:,None]   
    coord_valid[:, smpl_x.joint_part['lhand']]*=lhand_valid[:,None]  
    
    if 'rhand_pose' in human_model_param \
        and human_model_param['rhand_pose'] is not None:
        rhand_pose = human_model_param['rhand_pose']
        rhand_pose = torch.FloatTensor(rhand_pose).view(num_person, -1, 3)
        # rhand_valid = part_valid['rhand']
        # rotation_valid[:, smpl_x.orig_joint_part['rhand']]*=rhand_valid[:,None]
        # coord_valid[:, smpl_x.joint_part['rhand']]*=rhand_valid[:,None]
    else:
        rhand_pose = np.zeros((num_person, 3 * len(smpl_x.orig_joint_part['rhand'])), dtype=np.float32)
        rotation_valid[:, smpl_x.orig_joint_part['rhand']] = 0
        coord_valid[:, smpl_x.joint_part['rhand']] = 0
    rhand_pose*=rhand_valid[:,None,None]  
    rotation_valid[:, smpl_x.orig_joint_part['rhand']]*=rhand_valid[:,None]   
    coord_valid[:, smpl_x.joint_part['rhand']]*=rhand_valid[:,None]
    
    if 'expr' in human_model_param  and \
        human_model_param['expr'] is not None:
        expr = human_model_param['expr']
        # face_valid = part_valid['face']
        # expr_valid = expr_valid*face_valid
    else:
        expr = np.zeros((num_person, smpl_x.expr_code_dim), dtype=np.float32)
        expr_valid = expr_valid*0
    expr*=face_valid[:,None]   
    expr = torch.FloatTensor(expr).view(num_person,-1)
    expr_valid*=face_valid # expr is invalid if face_valid is 0
    
    if 'jaw_pose' in human_model_param and \
        human_model_param['jaw_pose'] is not None:
        jaw_pose = human_model_param['jaw_pose']
        # face_valid = part_valid['face']
        # rotation_valid[:, smpl_x.orig_joint_part['face']]*=face_valid[:,None]
        # coord_valid[:, smpl_x.joint_part['face']]*=face_valid[:,None]
    else:
        jaw_pose = np.zeros((num_person, 3), dtype=np.float32)
        rotation_valid[:,smpl_x.orig_joint_part['face']] = 0
        coord_valid[:,smpl_x.joint_part['face']] = 0
        
    jaw_pose*=face_valid[:,None]
    jaw_pose = torch.FloatTensor(jaw_pose).view(num_person, -1, 3)
    rotation_valid[:, smpl_x.orig_joint_part['face']]*=face_valid[:,None]
    coord_valid[:, smpl_x.joint_part['face']]*=face_valid[:,None]
    
    if 'gender' in human_model_param and \
        human_model_param['gender'] is not None:
        gender = human_model_param['gender']
    else:
        gender = 'neutral'
    
    if as_smplx == 'smpl':
        rotation_valid[:,:] = 0
        rotation_valid[:,:21] = 1
        expr_valid = expr_valid*0
        coord_valid[:,:] = 0
        coord_valid[:,smpl_x.joint_part['body']] = 1
    
    root_pose = torch.FloatTensor(root_pose).view(num_person, 1, 3)
    body_pose = torch.FloatTensor(body_pose).view(num_person, -1, 3)
    lhand_pose = torch.FloatTensor( lhand_pose).view(num_person, -1, 3)
    rhand_pose = torch.FloatTensor(rhand_pose).view(num_person, -1, 3)
    jaw_pose = torch.FloatTensor(jaw_pose).view(num_person, -1, 3)

    shape = torch.FloatTensor(shape).view(num_person, -1)
    expr = torch.FloatTensor(expr).view(num_person,-1)
    trans = torch.FloatTensor(trans).view(num_person,-1)

    
    

    pose = torch.cat((root_pose, body_pose, lhand_pose, rhand_pose, jaw_pose),dim=1)

    ## so far, data augmentations are not applied yet
    ## now, apply data augmentations

    
    # x,y affine transform, root-relative depth
    
    # 3D data rotation augmentation
    # rot_aug_mat = np.array(
    #     [[np.cos(np.deg2rad(-rot)), -np.sin(np.deg2rad(-rot)), 0],
    #      [np.sin(np.deg2rad(-rot)),
    #       np.cos(np.deg2rad(-rot)), 0], [0, 0, 1]],
    #     dtype=np.float32)
    
    # parameters
    # flip pose parameter (axis-angle)
    if do_flip:
        for pair in human_model.orig_flip_pairs:
            pose[:, pair[0], :], pose[:,
                                      pair[1], :] = pose[:, pair[1], :].clone(
                                      ), pose[:, pair[0], :].clone()
            rotation_valid[:,pair[0]], rotation_valid[:,pair[1]] = rotation_valid[:,pair[1]].copy(), rotation_valid[:,
                pair[0]].copy()
        pose[:,:, 1:3] *= -1  # multiply -1 to y and z axis of axis-angle
    # rotate root pose
    pose = pose.numpy()
    root_pose = pose[:, human_model.orig_root_joint_idx, :]
    
    # for pose_i in range(len(root_pose)):
    #     root_pose_mat = cv2.Rodrigues(root_pose[pose_i])[0]
    #     root_pose[pose_i] = cv2.Rodrigues(np.dot(rot_aug_mat,
    #                                              root_pose_mat))[0][:, 0]

    pose[:, human_model.orig_root_joint_idx] = root_pose.reshape(num_person, 3)

    # change to mean shape if beta is too far from it
    # shape[(shape.abs() > 3).any(dim=1)] = 0.
    shape = shape.numpy().reshape(num_person, -1)
    
    
    # shape_valid = shape.sum(-1)!=0

    # return results
    pose = pose.reshape(num_person, -1)
    expr = expr.numpy().reshape(num_person, -1)

        
    return pose, shape, expr, rotation_valid, coord_valid, expr_valid, shape_valid

def process_human_model_output_batch_simplify(human_model_param,
                                     do_flip,
                                     rot,
                                     as_smplx, data_name=None
                                     ):
    num_person = human_model_param['body_pose'].shape[0]
    human_model = smpl_x
    rotation_valid = np.ones((num_person,smpl_x.orig_joint_num), dtype=np.float32)
    coord_valid = np.ones((num_person,smpl_x.joint_num), dtype=np.float32)
    # expr_valid = np.ones((num_person), dtype=np.float32)
    # shape_valid = np.ones((num_person), dtype=np.float32)
    # shape, trans = human_model_param['shape'], human_model_param['trans']
    # check smplx valid key exsits
    if 'smplx_valid' in human_model_param:
        smplx_valid = human_model_param['smplx_valid']
        shape_valid = human_model_param['smplx_valid']
    else:
        smplx_valid = np.ones(num_person, dtype=np.bool8)
        shape_valid = np.ones(num_person, dtype=np.bool8)
        
    if 'expr_valid' in human_model_param:
        expr_valid = human_model_param['expr_valid']
    else:
        expr_valid = np.ones(num_person, dtype=np.bool8)
    expr_valid*=smplx_valid
    
    # check face valid key exsits
    if 'face_valid' in human_model_param:
        face_valid = human_model_param['face_valid']
    else:
        face_valid = np.ones(num_person, dtype=np.bool8)
    face_valid *= smplx_valid
    
    # check lhand valid key exsits
    if 'lhand_valid' in human_model_param:  
        lhand_valid = human_model_param['lhand_valid']
    else:
        lhand_valid = np.ones(num_person, dtype=np.bool8)
    lhand_valid*=smplx_valid
    
    # check rhand valid key exsits
    if 'rhand_valid' in human_model_param:
        rhand_valid = human_model_param['rhand_valid']
    else:
        rhand_valid = np.ones(num_person, dtype=np.bool8)
    rhand_valid*=smplx_valid
    
    # check validation of the smplx parameters
    if 'body_pose' in human_model_param \
        and human_model_param['body_pose'] is not None:
        root_pose, body_pose = human_model_param['root_pose'], human_model_param['body_pose']
        shape, trans = human_model_param['shape'], human_model_param['trans']
        root_pose = torch.FloatTensor(root_pose).view(num_person, 1, 3)
        body_pose = torch.FloatTensor(body_pose).view(num_person, -1, 3)
        shape = torch.FloatTensor(shape).view(num_person, -1)
        trans = torch.FloatTensor(trans).view(num_person,-1)
    else:
        root_pose = np.zeros((num_person, 3), dtype=np.float32)
        body_pose = np.zeros((num_person, 3 * len(smpl_x.orig_joint_part['body'])), dtype=np.float32)
        shape = np.zeros((num_person, 10), dtype=np.float32)
        trans = np.zeros((num_person, 3), dtype=np.float32)
        rotation_valid[:, smpl_x.orig_joint_part['body']] = 0
        coord_valid[:, smpl_x.joint_part['body']] = 0
    body_pose*=smplx_valid[:, None, None]
    root_pose*=smplx_valid[:, None, None]
    shape*=smplx_valid[:, None]
    trans*=smplx_valid[:, None]
    rotation_valid[:, smpl_x.orig_joint_part['body']]*=smplx_valid[:,None]   
    coord_valid[:, smpl_x.joint_part['body']]*=smplx_valid[:,None]  
    
    if 'lhand_pose' in human_model_param \
        and human_model_param['lhand_pose'] is not None:
        lhand_pose = human_model_param['lhand_pose']
        lhand_pose = torch.FloatTensor(lhand_pose).view(num_person, -1, 3)
    else:
        lhand_pose = np.zeros((num_person, 3 * len(smpl_x.orig_joint_part['lhand'])), dtype=np.float32)
        rotation_valid[:, smpl_x.orig_joint_part['lhand']] = 0
        coord_valid[:, smpl_x.joint_part['lhand']] = 0 
        
    lhand_pose*=lhand_valid[:,None,None]    
    rotation_valid[:, smpl_x.orig_joint_part['lhand']]*=lhand_valid[:,None]   
    coord_valid[:, smpl_x.joint_part['lhand']]*=lhand_valid[:,None]  

    if 'rhand_pose' in human_model_param \
        and human_model_param['rhand_pose'] is not None:
        rhand_pose = human_model_param['rhand_pose']
        rhand_pose = torch.FloatTensor(rhand_pose).view(num_person, -1, 3)
    else:
        rhand_pose = np.zeros((num_person, 3 * len(smpl_x.orig_joint_part['rhand'])), dtype=np.float32)
        rotation_valid[:, smpl_x.orig_joint_part['rhand']] = 0
        coord_valid[:, smpl_x.joint_part['rhand']] = 0
    rhand_pose*=rhand_valid[:,None,None]  
    rotation_valid[:, smpl_x.orig_joint_part['rhand']]*=rhand_valid[:,None]   
    coord_valid[:, smpl_x.joint_part['rhand']]*=rhand_valid[:,None]
    
    # face valid > expr valid > face kps valid, but for synbody and bedlam
    if 'expr' in human_model_param  and \
        human_model_param['expr'] is not None:
        expr = human_model_param['expr']
    else:
        expr = np.zeros((num_person, smpl_x.expr_code_dim), dtype=np.float32)
        expr_valid = expr_valid * 0
    expr*=face_valid[:,None]   
    expr = torch.FloatTensor(expr).view(num_person,-1)
    expr_valid*=face_valid # expr is invalid if face_valid is 0
    # for coco and ubody, if face is invalid, jaw pose and face kps2d should be false
    if 'jaw_pose' in human_model_param and \
        human_model_param['jaw_pose'] is not None:
        jaw_pose = human_model_param['jaw_pose']
    else:
        jaw_pose = np.zeros((num_person, 3), dtype=np.float32)
        rotation_valid[:,smpl_x.orig_joint_part['face']] = 0
        coord_valid[:,smpl_x.joint_part['face']] = 0
    # if data_name not in ["BEDLAM"]:
    #     face_valid = face_valid * expr_valid * jaw_pose
    # else:
    #     # synbody and bedlam exps valid is false but jaw pose and face kps2d is valid
    #     face_valid = face_valid
    jaw_pose*=face_valid[:,None]
    jaw_pose = torch.FloatTensor(jaw_pose).view(num_person, -1, 3)
    rotation_valid[:, smpl_x.orig_joint_part['face']]*=face_valid[:,None]
    coord_valid[:, smpl_x.joint_part['face']]*=face_valid[:,None]
    # if data_name not in ["BEDLAM" , "SynBody"]:
    #     coord_valid[:, smpl_x.joint_part['face']] = coord_valid[:, smpl_x.joint_part['face']] * expr_valid[:,None] # expr valid?
    # coord_valid[:, smpl_x.joint_part['face']] = coord_valid[:, smpl_x.joint_part['face']] * face_valid[:,None]

    if 'gender' in human_model_param and \
        human_model_param['gender'] is not None:
        gender = human_model_param['gender']
    else:
        gender = 'neutral'

    if as_smplx == 'smpl':
        rotation_valid[:,:] = 0
        rotation_valid[:,:21] = 1
        expr_valid = expr_valid*0
        coord_valid[:,:] = 0
        coord_valid[:,smpl_x.joint_part['body']] = 1 
    # print(root_pose.shape, body_pose.shape, lhand_pose.shape, rhand_pose.shape, jaw_pose.shape)
    pose = torch.cat((root_pose, body_pose, lhand_pose, rhand_pose, jaw_pose),dim=1)
    ## so far, data augmentations are not applied yet
    ## now, apply data augmentations
    
    # 3D data rotation augmentation
    # rot_aug_mat = np.array(
    #     [[np.cos(np.deg2rad(-rot)), -np.sin(np.deg2rad(-rot)), 0],
    #      [np.sin(np.deg2rad(-rot)),
    #       np.cos(np.deg2rad(-rot)), 0], [0, 0, 1]],
    #     dtype=np.float32)
    
    # parameters
    # flip pose parameter (axis-angle)
    if do_flip:
        for pair in human_model.orig_flip_pairs:
            pose[:, pair[0], :], pose[:,
                                      pair[1], :] = pose[:, pair[1], :].clone(
                                      ), pose[:, pair[0], :].clone()
            rotation_valid[:,pair[0]], rotation_valid[:,pair[1]] = rotation_valid[:,pair[1]].copy(), rotation_valid[:,
                pair[0]].copy()
        pose[:,:, 1:3] *= -1  # multiply -1 to y and z axis of axis-angle
    # rotate root pose
    pose = pose.numpy()
    root_pose = pose[:, human_model.orig_root_joint_idx, :]

    # for pose_i in range(len(root_pose)):
    #     root_pose_mat = cv2.Rodrigues(root_pose[pose_i])[0]
    #     root_pose[pose_i] = cv2.Rodrigues(np.dot(rot_aug_mat,
    #                                              root_pose_mat))[0][:, 0]

    pose[:, human_model.orig_root_joint_idx] = root_pose.reshape(num_person, 3)

    # change to mean shape if beta is too far from it
    # shape[(shape.abs() > 3).any(dim=1)] = 0.
    shape = shape.numpy().reshape(num_person, -1)
    # shape_valid = shape.sum(-1)!=0
    # return results
    pose = pose.reshape(num_person, -1)
    expr = expr.numpy().reshape(num_person, -1)

        
    return pose, shape, expr, rotation_valid, coord_valid, expr_valid, shape_valid

def load_obj(file_name):
    v = []
    obj_file = open(file_name)
    for line in obj_file:
        words = line.split(' ')
        if words[0] == 'v':
            x, y, z = float(words[1]), float(words[2]), float(words[3])
            v.append(np.array([x, y, z]))
    return np.stack(v)


def load_ply(file_name):
    plydata = PlyData.read(file_name)
    x = plydata['vertex']['x']
    y = plydata['vertex']['y']
    z = plydata['vertex']['z']
    v = np.stack((x, y, z), 1)
    return v


def resize_bbox(bbox, scale=1.2):
    if isinstance(bbox, list):
        x1, y1, x2, y2 = bbox[0], bbox[1], bbox[2], bbox[3]
    else:
        x1, y1, x2, y2 = bbox
    x_center = (x1 + x2) / 2.0
    y_center = (y1 + y2) / 2.0
    x_size, y_size = x2 - x1, y2 - y1
    x1_resize = x_center - x_size / 2.0 * scale
    x2_resize = x_center + x_size / 2.0 * scale
    y1_resize = y_center - y_size / 2.0 * scale
    y2_resize = y_center + y_size / 2.0 * scale
    bbox[0], bbox[1], bbox[2], bbox[
        3] = x1_resize, y1_resize, x2_resize, y2_resize
    return bbox