File size: 21,987 Bytes
d7e58f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
"""Misc functions, including distributed helpers.

Mostly copy-paste from torchvision references.
"""
from mmcv.runner import get_dist_info, init_dist
import os
import random
import subprocess
import time
from collections import OrderedDict, defaultdict, deque
import datetime
import pickle
from typing import Optional, List

import socket
import json, time
import numpy as np
import torch
import torch.distributed as dist
from torch import Tensor
import logging

import colorsys

import torchvision
__torchvision_need_compat_flag = float(
    torchvision.__version__.split('.')[1]) < 7
if __torchvision_need_compat_flag:
    from torchvision.ops import _new_empty_tensor
    from torchvision.ops.misc import _output_size


def is_free_port(port: int) -> bool:
    ips = socket.gethostbyname_ex(socket.gethostname())[-1]
    ips.append('localhost')
    with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s:
        return all(s.connect_ex((ip, port)) != 0 for ip in ips)


def find_free_port() -> str:
    # Copied from https://github.com/facebookresearch/detectron2/blob/main/detectron2/engine/launch.py # noqa: E501
    sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
    # Binding to port 0 will cause the OS to find an available port for us
    sock.bind(('', 0))
    port = sock.getsockname()[1]
    sock.close()
    # NOTE: there is still a chance the port could be taken by other processes.
    return port


class SmoothedValue(object):
    """Track a series of values and provide access to smoothed values over a
    window or the global series average."""
    def __init__(self, window_size=20, fmt=None):
        if fmt is None:
            fmt = '{median:.4f} ({global_avg:.4f})'
        self.deque = deque(maxlen=window_size)
        self.total = 0.0
        self.count = 0
        self.fmt = fmt

    def update(self, value, n=1):
        self.deque.append(value)
        self.count += n
        self.total += value * n

    def synchronize_between_processes(self):
        """
        Warning: does not synchronize the deque!
        """
        if not is_dist_avail_and_initialized():
            return
        t = torch.tensor([self.count, self.total],
                         dtype=torch.float64,
                         device='cuda')
        dist.barrier()
        dist.all_reduce(t)
        t = t.tolist()
        self.count = int(t[0])
        self.total = t[1]

    @property
    def median(self):
        d = torch.tensor(list(self.deque))
        if d.shape[0] == 0:
            return 0
        return d.median().item()

    @property
    def avg(self):
        d = torch.tensor(list(self.deque), dtype=torch.float32)
        return d.mean().item()

    @property
    def global_avg(self):
        return self.total / self.count

    @property
    def max(self):
        return max(self.deque)

    @property
    def value(self):
        return self.deque[-1]

    def __str__(self):
        return self.fmt.format(median=self.median,
                               avg=self.avg,
                               global_avg=self.global_avg,
                               max=self.max,
                               value=self.value)


def all_gather(data):
    """
    Run all_gather on arbitrary picklable data (not necessarily tensors)
    Args:
        data: any picklable object
    Returns:
        list[data]: list of data gathered from each rank
    """
    world_size = get_world_size()
    if world_size == 1:
        return [data]

    # serialized to a Tensor
    buffer = pickle.dumps(data)
    storage = torch.ByteStorage.from_buffer(buffer)
    tensor = torch.ByteTensor(storage).to('cuda')

    # obtain Tensor size of each rank
    local_size = torch.tensor([tensor.numel()], device='cuda')
    size_list = [torch.tensor([0], device='cuda') for _ in range(world_size)]
    dist.all_gather(size_list, local_size)
    size_list = [int(size.item()) for size in size_list]
    max_size = max(size_list)

    tensor_list = []
    for _ in size_list:
        tensor_list.append(
            torch.empty((max_size, ), dtype=torch.uint8, device='cuda'))
    if local_size != max_size:
        padding = torch.empty(size=(max_size - local_size, ),
                              dtype=torch.uint8,
                              device='cuda')
        tensor = torch.cat((tensor, padding), dim=0)
    dist.all_gather(tensor_list, tensor)

    data_list = []
    for size, tensor in zip(size_list, tensor_list):
        buffer = tensor.cpu().numpy().tobytes()[:size]
        data_list.append(pickle.loads(buffer))

    return data_list


def reduce_dict(input_dict, average=True):
    """
    Args:
        input_dict (dict): all the values will be reduced
        average (bool): whether to do average or sum
    Reduce the values in the dictionary from all processes so that all processes
    have the averaged results. Returns a dict with the same fields as
    input_dict, after reduction.
    """
    world_size = get_world_size()
    if world_size < 2:
        return input_dict
    with torch.no_grad():
        names = []
        values = []
        # sort the keys so that they are consistent across processes
        # import pdb; pdb.set_trace()
        for k in sorted(input_dict.keys()):

            names.append(k)
            values.append(input_dict[k])
        # pdb.set_trace()
        values = torch.stack(values, dim=0)
        
        try:
            dist.all_reduce(values)
            rank = dist.get_rank()
            # logging.info(f'Rank {rank} after all_reduce')
        except Exception as e:
            rank = dist.get_rank()
            print(f'Exception in rank {rank}: {e}')
            # print(f'values: {values}')
            # print(f'names: {names}')
            logging.info(f'Rank {rank} after all_reduce')
        if average:
            values /= world_size
        reduced_dict = {k: v for k, v in zip(names, values)}
    return reduced_dict

def setup_logging():
    logging.basicConfig(level=logging.INFO)
    rank = dist.get_rank()
    logging.info(f'Rank {rank} before all_reduce')

class MetricLogger(object):
    def __init__(self, delimiter='\t'):
        self.meters = defaultdict(SmoothedValue)
        self.delimiter = delimiter

    def update(self, **kwargs):
        for k, v in kwargs.items():
            if isinstance(v, torch.Tensor):
                v = v.item()
            assert isinstance(v, (float, int))
            self.meters[k].update(v)

    def __getattr__(self, attr):
        if attr in self.meters:
            return self.meters[attr]
        if attr in self.__dict__:
            return self.__dict__[attr]
        raise AttributeError("'{}' object has no attribute '{}'".format(
            type(self).__name__, attr))

    def __str__(self):
        loss_str = []
        for name, meter in self.meters.items():
            if meter.count > 0:
                loss_str.append('{}: {}'.format(name, str(meter)))
        return self.delimiter.join(loss_str)

    def synchronize_between_processes(self):
        for meter in self.meters.values():
            meter.synchronize_between_processes()

    def add_meter(self, name, meter):
        self.meters[name] = meter

    def log_every(self, iterable, print_freq, header=None, logger=None):
        if logger is None:
            print_func = print
        else:
            print_func = logger.info

        i = 0
        if not header:
            header = ''
        start_time = time.time()
        end = time.time()
        iter_time = SmoothedValue(fmt='{avg:.4f}')
        data_time = SmoothedValue(fmt='{avg:.4f}')
        space_fmt = ':' + str(len(str(len(iterable)))) + 'd'
        if torch.cuda.is_available():
            log_msg = self.delimiter.join([
                header, '[{0' + space_fmt + '}/{1}]', 'eta: {eta}', '{meters}',
                'time: {time}', 'data: {data}', 'max mem: {memory:.0f}'
            ])
        else:
            log_msg = self.delimiter.join([
                header, '[{0' + space_fmt + '}/{1}]', 'eta: {eta}', '{meters}',
                'time: {time}', 'data: {data}'
            ])
        MB = 1024.0 * 1024.0
        
        for obj in iterable:
            data_time.update(time.time() - end)
            yield obj
            # import pdb; pdb.set_trace()
            iter_time.update(time.time() - end)
            if i % print_freq == 0 or i == len(iterable) - 1:
                eta_seconds = iter_time.global_avg * (len(iterable) - i)
                eta_string = str(datetime.timedelta(seconds=int(eta_seconds)))
                if torch.cuda.is_available():
                    print_func(
                        log_msg.format(
                            i,
                            len(iterable),
                            eta=eta_string,
                            meters=str(self),
                            time=str(iter_time),
                            data=str(data_time),
                            memory=torch.cuda.max_memory_allocated() / MB))
                else:
                    print_func(
                        log_msg.format(i,
                                       len(iterable),
                                       eta=eta_string,
                                       meters=str(self),
                                       time=str(iter_time),
                                       data=str(data_time)))
            i += 1
            end = time.time()
        total_time = time.time() - start_time
        total_time_str = str(datetime.timedelta(seconds=int(total_time)))
        print_func('{} Total time: {} ({:.4f} s / it)'.format(
            header, total_time_str, total_time / len(iterable)))


class LogBuffer:
    def __init__(self):
        self.val_history = OrderedDict()
        self.n_history = OrderedDict()
        self.output = OrderedDict()
        self.ready = False

    def clear(self) -> None:
        self.val_history.clear()
        self.n_history.clear()
        self.clear_output()

    def clear_output(self) -> None:
        self.output.clear()
        self.ready = False

    def update(self, vars: dict, count: int = 1) -> None:
        assert isinstance(vars, dict)
        for key, var in vars.items():
            if key not in self.val_history:
                self.val_history[key] = []
                self.n_history[key] = []
            self.val_history[key].append(var)
            self.n_history[key].append(count)

    def average(self, n: int = 0) -> None:
        """Average latest n values or all values."""
        assert n >= 0
        for key in self.val_history:
            values = np.array(self.val_history[key][-n:])
            nums = np.array(self.n_history[key][-n:])
            avg = np.sum(values * nums) / np.sum(nums)
            self.output[key] = avg
        self.ready = True


def get_sha():
    cwd = os.path.dirname(os.path.abspath(__file__))

    def _run(command):
        return subprocess.check_output(command,
                                       cwd=cwd).decode('ascii').strip()

    sha = 'N/A'
    diff = 'clean'
    branch = 'N/A'
    try:
        sha = _run(['git', 'rev-parse', 'HEAD'])
        subprocess.check_output(['git', 'diff'], cwd=cwd)
        diff = _run(['git', 'diff-index', 'HEAD'])
        diff = 'has uncommited changes' if diff else 'clean'
        branch = _run(['git', 'rev-parse', '--abbrev-ref', 'HEAD'])
    except Exception:
        pass
    message = f'sha: {sha}, status: {diff}, branch: {branch}'
    return message


def collate_fn(batch):
    # import pdb; pdb.set_trace()
    batch = list(zip(*batch))
    batch[0] = nested_tensor_from_tensor_list(batch[0])
    return tuple(batch)


def _max_by_axis(the_list):
    # type: (List[List[int]]) -> List[int]
    maxes = the_list[0]
    for sublist in the_list[1:]:
        for index, item in enumerate(sublist):
            maxes[index] = max(maxes[index], item)
    return maxes


class NestedTensor(object):
    def __init__(self, tensors, mask: Optional[Tensor]):
        self.tensors = tensors
        self.mask = mask
        if mask == 'auto':
            self.mask = torch.zeros_like(tensors).to(tensors.device)
            if self.mask.dim() == 3:
                self.mask = self.mask.sum(0).to(bool)
            elif self.mask.dim() == 4:
                self.mask = self.mask.sum(1).to(bool)
            else:
                raise ValueError(
                    'tensors dim must be 3 or 4 but {}({})'.format(
                        self.tensors.dim(), self.tensors.shape))

    def imgsize(self):
        res = []
        for i in range(self.tensors.shape[0]):
            mask = self.mask[i]
            maxH = (~mask).sum(0).max()
            maxW = (~mask).sum(1).max()
            res.append(torch.Tensor([maxH, maxW]))
        return res

    def to(self, device):
        # type: (Device) -> NestedTensor # noqa
        cast_tensor = self.tensors.to(device)
        mask = self.mask
        if mask is not None:
            assert mask is not None
            cast_mask = mask.to(device)
        else:
            cast_mask = None
        return NestedTensor(cast_tensor, cast_mask)

    def to_img_list_single(self, tensor, mask):
        assert tensor.dim() == 3, 'dim of tensor should be 3 but {}'.format(
            tensor.dim())
        maxH = (~mask).sum(0).max()
        maxW = (~mask).sum(1).max()
        img = tensor[:, :maxH, :maxW]
        return img

    def to_img_list(self):
        """remove the padding and convert to img list
        Returns:
            [type]: [description]
        """
        if self.tensors.dim() == 3:
            return self.to_img_list_single(self.tensors, self.mask)
        else:
            res = []
            for i in range(self.tensors.shape[0]):
                tensor_i = self.tensors[i]
                mask_i = self.mask[i]
                res.append(self.to_img_list_single(tensor_i, mask_i))
            return res

    @property
    def device(self):
        return self.tensors.device

    def decompose(self):
        return self.tensors, self.mask

    def __repr__(self):
        return str(self.tensors)

    @property
    def shape(self):
        return {
            'tensors.shape': self.tensors.shape,
            'mask.shape': self.mask.shape
        }


def nested_tensor_from_tensor_list(tensor_list: List[Tensor]):
    # TODO make this more general
    if tensor_list[0].ndim == 3:
        if torchvision._is_tracing():
            # nested_tensor_from_tensor_list() does not export well to ONNX
            # call _onnx_nested_tensor_from_tensor_list() instead
            return _onnx_nested_tensor_from_tensor_list(tensor_list)

        # TODO make it support different-sized images
        max_size = _max_by_axis([list(img.shape) for img in tensor_list])
        # min_size = tuple(min(s) for s in zip(*[img.shape for img in tensor_list]))
        batch_shape = [len(tensor_list)] + max_size
        b, c, h, w = batch_shape
        dtype = tensor_list[0].dtype
        device = tensor_list[0].device
        tensor = torch.zeros(batch_shape, dtype=dtype, device=device)
        mask = torch.ones((b, h, w), dtype=torch.bool, device=device)
        for img, pad_img, m in zip(tensor_list, tensor, mask):
            pad_img[:img.shape[0], :img.shape[1], :img.shape[2]].copy_(img)
            m[:img.shape[1], :img.shape[2]] = False
    else:
        raise ValueError('not supported')
    return NestedTensor(tensor, mask)


@torch.jit.unused
def _onnx_nested_tensor_from_tensor_list(
        tensor_list: List[Tensor]) -> NestedTensor:
    max_size = []
    for i in range(tensor_list[0].dim()):
        max_size_i = torch.max(
            torch.stack([img.shape[i] for img in tensor_list
                         ]).to(torch.float32)).to(torch.int64)
        max_size.append(max_size_i)
    max_size = tuple(max_size)

    padded_imgs = []
    padded_masks = []
    for img in tensor_list:
        padding = [(s1 - s2) for s1, s2 in zip(max_size, tuple(img.shape))]
        padded_img = torch.nn.functional.pad(
            img, (0, padding[2], 0, padding[1], 0, padding[0]))
        padded_imgs.append(padded_img)

        m = torch.zeros_like(img[0], dtype=torch.int, device=img.device)
        padded_mask = torch.nn.functional.pad(m,
                                              (0, padding[2], 0, padding[1]),
                                              'constant', 1)
        padded_masks.append(padded_mask.to(torch.bool))

    tensor = torch.stack(padded_imgs)
    mask = torch.stack(padded_masks)

    return NestedTensor(tensor, mask=mask)


def setup_for_distributed(is_master):
    """This function disables printing when not in master process."""
    import builtins as __builtin__
    builtin_print = __builtin__.print

    def print(*args, **kwargs):
        force = kwargs.pop('force', False)
        if is_master or force:
            builtin_print(*args, **kwargs)

    __builtin__.print = print


def is_dist_avail_and_initialized():
    if not dist.is_available():
        return False
    if not dist.is_initialized():
        return False
    return True


def get_world_size():
    if not is_dist_avail_and_initialized():
        return 1
    return dist.get_world_size()


def get_rank():
    if not is_dist_avail_and_initialized():
        return 0
    return dist.get_rank()


def is_main_process():
    return get_rank() == 0


def save_on_master(*args, **kwargs):
    if is_main_process():
        torch.save(*args, **kwargs)



def init_distributed_mode(args):
    if 'WORLD_SIZE' in os.environ and os.environ['WORLD_SIZE'] != '':
        local_world_size = int(os.environ['WORLD_SIZE'])
        args.world_size = args.world_size * local_world_size
        args.gpu = args.local_rank = int(os.environ['LOCAL_RANK'])
        args.rank = args.rank * local_world_size + args.local_rank
        print('world size: {}, rank: {}, local rank: {}'.format(args.world_size, args.rank, args.local_rank))
        print(json.dumps(dict(os.environ), indent=2))
    elif 'SLURM_PROCID' in os.environ:
        args.rank = int(os.environ['SLURM_PROCID'])
        args.gpu = args.local_rank = int(os.environ['SLURM_LOCALID'])
        args.world_size = int(os.environ['SLURM_NPROCS'])
        
        print('world size: {}, world rank: {}, local rank: {}, device_count: {}'.format(args.world_size, args.rank, args.local_rank, torch.cuda.device_count()))
        print("os.environ['SLURM_JOB_NODELIST']:", os.environ['SLURM_JOB_NODELIST'])
        print(json.dumps(dict(os.environ), indent=2))
        print('args:')
        print(json.dumps(vars(args), indent=2))
    else:
        print('Not using distributed mode')
        args.distributed = False
        args.world_size = 1
        args.rank = 0
        args.local_rank = 0
        return

    print("world_size:{} rank:{} local_rank:{}".format(args.world_size, args.rank, args.local_rank))
    args.distributed = True
    torch.cuda.set_device(args.local_rank)
    args.dist_backend = 'nccl'
    print('| distributed init (rank {}): {}'.format(args.rank, args.dist_url), flush=True)
    torch.distributed.init_process_group(backend=args.dist_backend, init_method=args.dist_url,
                                         world_size=args.world_size, rank=args.rank)
    print("Before torch.distributed.barrier()")
    torch.distributed.barrier()
    print("End torch.distributed.barrier()")
    setup_for_distributed(args.rank == 0)


@torch.no_grad()
def accuracy(output, target, topk=(1, )):
    """Computes the precision@k for the specified values of k."""
    if target.numel() == 0:
        return [torch.zeros([], device=output.device)]
    maxk = max(topk)
    batch_size = target.size(0)

    _, pred = output.topk(maxk, 1, True, True)
    pred = pred.t()
    correct = pred.eq(target.view(1, -1).expand_as(pred))

    res = []
    for k in topk:
        correct_k = correct[:k].view(-1).float().sum(0)
        res.append(correct_k.mul_(100.0 / batch_size))
    return res


def interpolate(input,
                size=None,
                scale_factor=None,
                mode='nearest',
                align_corners=None):
    # type: (Tensor, Optional[List[int]], Optional[float], str, Optional[bool]) -> Tensor
    """Equivalent to nn.functional.interpolate, but with support for empty
    batch sizes.

    This will eventually be supported natively by PyTorch, and this class can
    go away.
    """
    if __torchvision_need_compat_flag < 0.7:
        if input.numel() > 0:
            return torch.nn.functional.interpolate(input, size, scale_factor,
                                                   mode, align_corners)

        output_shape = _output_size(2, input, size, scale_factor)
        output_shape = list(input.shape[:-2]) + list(output_shape)
        return _new_empty_tensor(input, output_shape)
    else:
        return torchvision.ops.misc.interpolate(input, size, scale_factor,
                                                mode, align_corners)


class color_sys():
    def __init__(self, num_colors) -> None:
        self.num_colors = num_colors
        colors = []
        for i in np.arange(0., 360., 360. / num_colors):
            hue = i / 360.
            lightness = (50 + np.random.rand() * 10) / 100.
            saturation = (90 + np.random.rand() * 10) / 100.
            colors.append(
                tuple([
                    int(j * 255)
                    for j in colorsys.hls_to_rgb(hue, lightness, saturation)
                ]))
        self.colors = colors

    def __call__(self, idx):
        return self.colors[idx]


def inverse_sigmoid(x, eps=1e-3):
    x = x.clamp(min=0, max=1)
    x1 = x.clamp(min=eps)
    x2 = (1 - x).clamp(min=eps)
    return torch.log(x1 / x2)


def clean_state_dict(state_dict):
    new_state_dict = OrderedDict()
    for k, v in state_dict.items():
        if k[:7] == 'module.':
            k = k[7:]  # remove `module.`
        new_state_dict[k] = v
    return new_state_dict