Spaces:
Sleeping
Sleeping
File size: 13,536 Bytes
d7e58f0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 |
import torch
import random
from torch import nn, Tensor
import os
import numpy as np
import math
import torch.nn.functional as F
from torch import nn
class PoseProjector(nn.Module):
def __init__(self, hidden_dim=256, num_body_points=17):
super().__init__()
self.num_body_points = num_body_points
self.V_projector = nn.Linear(hidden_dim, num_body_points)
nn.init.constant_(self.V_projector.bias.data, 0)
self.Z_projector = MLP(hidden_dim, hidden_dim, num_body_points * 2, 3)
nn.init.constant_(self.Z_projector.layers[-1].weight.data, 0)
nn.init.constant_(self.Z_projector.layers[-1].bias.data, 0)
def forward(self, hs):
"""_summary_
Args:
hs (_type_): ..., bs, nq, hidden_dim
"""
Z = self.Z_projector(hs) # ..., bs, nq, 34
V = self.V_projector(hs) # ..., bs, nq, 17
return Z, V
def gen_encoder_output_proposals(memory: Tensor,
memory_padding_mask: Tensor,
spatial_shapes: Tensor,
learnedwh=None):
"""
Input:
- memory: bs, \sum{hw}, d_model
- memory_padding_mask: bs, \sum{hw}
- spatial_shapes: nlevel, 2
- learnedwh: 2
Output:
- output_memory: bs, \sum{hw}, d_model
- output_proposals: bs, \sum{hw}, 4
"""
N_, S_, C_ = memory.shape
base_scale = 4.0
proposals = []
_cur = 0
for lvl, (H_, W_) in enumerate(spatial_shapes):
mask_flatten_ = memory_padding_mask[:, _cur:(_cur + H_ * W_)].view(
N_, H_, W_, 1)
valid_H = torch.sum(~mask_flatten_[:, :, 0, 0], 1)
valid_W = torch.sum(~mask_flatten_[:, 0, :, 0], 1)
grid_y, grid_x = torch.meshgrid(
torch.linspace(0,
H_ - 1,
H_,
dtype=torch.float32,
device=memory.device),
torch.linspace(0,
W_ - 1,
W_,
dtype=torch.float32,
device=memory.device))
grid = torch.cat(
[grid_x.unsqueeze(-1), grid_y.unsqueeze(-1)], -1) # H_, W_, 2
scale = torch.cat([valid_W.unsqueeze(-1),
valid_H.unsqueeze(-1)], 1).view(N_, 1, 1, 2)
grid = (grid.unsqueeze(0).expand(N_, -1, -1, -1) + 0.5) / scale
if learnedwh is not None:
wh = torch.ones_like(grid) * learnedwh.sigmoid() * (2.0**lvl)
else:
wh = torch.ones_like(grid) * 0.05 * (2.0**lvl)
proposal = torch.cat((grid, wh), -1).view(N_, -1, 4)
proposals.append(proposal)
_cur += (H_ * W_)
# import pdb; pdb.set_trace()
output_proposals = torch.cat(proposals, 1)
output_proposals_valid = ((output_proposals > 0.01) &
(output_proposals < 0.99)).all(-1, keepdim=True)
output_proposals = torch.log(output_proposals /
(1 - output_proposals)) # unsigmoid
output_proposals = output_proposals.masked_fill(
memory_padding_mask.unsqueeze(-1), float('inf'))
output_proposals = output_proposals.masked_fill(~output_proposals_valid,
float('inf'))
output_memory = memory
output_memory = output_memory.masked_fill(
memory_padding_mask.unsqueeze(-1), float(0))
output_memory = output_memory.masked_fill(~output_proposals_valid,
float(0))
return output_memory, output_proposals
class RandomBoxPerturber():
def __init__(self,
x_noise_scale=0.2,
y_noise_scale=0.2,
w_noise_scale=0.2,
h_noise_scale=0.2) -> None:
self.noise_scale = torch.Tensor(
[x_noise_scale, y_noise_scale, w_noise_scale, h_noise_scale])
def __call__(self, refanchors: Tensor) -> Tensor:
nq, bs, query_dim = refanchors.shape
device = refanchors.device
noise_raw = torch.rand_like(refanchors)
noise_scale = self.noise_scale.to(device)[:query_dim]
new_refanchors = refanchors * (1 + (noise_raw - 0.5) * noise_scale)
return new_refanchors.clamp_(0, 1)
def sigmoid_focal_loss(inputs,
targets,
num_boxes,
alpha: float = 0.25,
gamma: float = 2):
"""
Loss used in RetinaNet for dense detection: https://arxiv.org/abs/1708.02002.
Args:
inputs: A float tensor of arbitrary shape.
The predictions for each example.
targets: A float tensor with the same shape as inputs. Stores the binary
classification label for each element in inputs
(0 for the negative class and 1 for the positive class).
alpha: (optional) Weighting factor in range (0,1) to balance
positive vs negative examples. Default = -1 (no weighting).
gamma: Exponent of the modulating factor (1 - p_t) to
balance easy vs hard examples.
Returns:
Loss tensor
"""
prob = inputs.sigmoid()
ce_loss = F.binary_cross_entropy_with_logits(inputs,
targets,
reduction='none')
p_t = prob * targets + (1 - prob) * (1 - targets)
loss = ce_loss * ((1 - p_t)**gamma)
if alpha >= 0:
alpha_t = alpha * targets + (1 - alpha) * (1 - targets)
loss = alpha_t * loss
return loss.mean(1).sum() / num_boxes
class MLP(nn.Module):
"""Very simple multi-layer perceptron (also called FFN)"""
def __init__(self, input_dim, hidden_dim, output_dim, num_layers):
super().__init__()
self.num_layers = num_layers
h = [hidden_dim] * (num_layers - 1)
self.layers = nn.ModuleList(
nn.Linear(n, k) for n, k in zip([input_dim] + h, h + [output_dim]))
def forward(self, x):
for i, layer in enumerate(self.layers):
x = F.relu(layer(x)) if i < self.num_layers - 1 else layer(x)
return x
def _get_activation_fn(activation, d_model=256, batch_dim=0):
"""Return an activation function given a string."""
if activation == 'relu':
return F.relu
if activation == 'gelu':
return F.gelu
if activation == 'glu':
return F.glu
if activation == 'prelu':
return nn.PReLU()
if activation == 'selu':
return F.selu
raise RuntimeError(F'activation should be relu/gelu, not {activation}.')
def gen_sineembed_for_position(pos_tensor):
# n_query, bs, _ = pos_tensor.size()
# sineembed_tensor = torch.zeros(n_query, bs, 256)
scale = 2 * math.pi
dim_t = torch.arange(128, dtype=torch.float32, device=pos_tensor.device)
dim_t = 10000**(2 * (dim_t // 2) / 128)
x_embed = pos_tensor[:, :, 0] * scale
y_embed = pos_tensor[:, :, 1] * scale
pos_x = x_embed[:, :, None] / dim_t
pos_y = y_embed[:, :, None] / dim_t
pos_x = torch.stack((pos_x[:, :, 0::2].sin(), pos_x[:, :, 1::2].cos()),
dim=3).flatten(2)
pos_y = torch.stack((pos_y[:, :, 0::2].sin(), pos_y[:, :, 1::2].cos()),
dim=3).flatten(2)
if pos_tensor.size(-1) == 2:
pos = torch.cat((pos_y, pos_x), dim=2)
elif pos_tensor.size(-1) == 4:
w_embed = pos_tensor[:, :, 2] * scale
pos_w = w_embed[:, :, None] / dim_t
pos_w = torch.stack((pos_w[:, :, 0::2].sin(), pos_w[:, :, 1::2].cos()),
dim=3).flatten(2)
h_embed = pos_tensor[:, :, 3] * scale
pos_h = h_embed[:, :, None] / dim_t
pos_h = torch.stack((pos_h[:, :, 0::2].sin(), pos_h[:, :, 1::2].cos()),
dim=3).flatten(2)
pos = torch.cat((pos_y, pos_x, pos_w, pos_h), dim=2)
else:
raise ValueError('Unknown pos_tensor shape(-1):{}'.format(
pos_tensor.size(-1)))
return pos
def oks_overlaps(kpt_preds, kpt_gts, kpt_valids, kpt_areas, sigmas):
sigmas = kpt_preds.new_tensor(sigmas)
variances = (sigmas * 2)**2
assert kpt_preds.size(0) == kpt_gts.size(0)
kpt_preds = kpt_preds.reshape(-1, kpt_preds.size(-1) // 2, 2)
kpt_gts = kpt_gts.reshape(-1, kpt_gts.size(-1) // 2, 2)
squared_distance = (kpt_preds[:, :, 0] - kpt_gts[:, :, 0]) ** 2 + \
(kpt_preds[:, :, 1] - kpt_gts[:, :, 1]) ** 2
# import pdb
# pdb.set_trace()
# assert (kpt_valids.sum(-1) > 0).all()
squared_distance0 = squared_distance / (kpt_areas[:, None] *
variances[None, :] * 2)
squared_distance1 = torch.exp(-squared_distance0)
squared_distance1 = squared_distance1 * kpt_valids
oks = squared_distance1.sum(dim=1) / (kpt_valids.sum(dim=1) + 1e-6)
return oks
def oks_loss(pred,
target,
valid=None,
area=None,
linear=False,
sigmas=None,
eps=1e-6):
"""Oks loss.
Computing the oks loss between a set of predicted poses and target poses.
The loss is calculated as negative log of oks.
Args:
pred (torch.Tensor): Predicted poses of format (x1, y1, x2, y2, ...),
shape (n, 2K).
target (torch.Tensor): Corresponding gt poses, shape (n, 2K).
linear (bool, optional): If True, use linear scale of loss instead of
log scale. Default: False.
eps (float): Eps to avoid log(0).
Return:
torch.Tensor: Loss tensor.
"""
oks = oks_overlaps(pred, target, valid, area, sigmas).clamp(min=eps)
if linear:
loss = 1 - oks
else:
loss = -oks.log()
loss = loss * valid.sum(-1) / (valid.sum(-1) + eps)
return loss
class OKSLoss(nn.Module):
"""IoULoss.
Computing the oks loss between a set of predicted poses and target poses.
Args:
linear (bool): If True, use linear scale of loss instead of log scale.
Default: False.
eps (float): Eps to avoid log(0).
reduction (str): Options are "none", "mean" and "sum".
loss_weight (float): Weight of loss.
"""
def __init__(self,
linear=False,
num_keypoints=17,
eps=1e-6,
reduction='mean',
loss_weight=1.0):
super(OKSLoss, self).__init__()
self.linear = linear
self.eps = eps
self.reduction = reduction
self.loss_weight = loss_weight
if num_keypoints == 17:
self.sigmas = np.array([
.26, .25, .25, .35, .35, .79, .79, .72, .72, .62, .62, 1.07,
1.07, .87, .87, .89, .89
],
dtype=np.float32) / 10.0
elif num_keypoints == 14:
self.sigmas = np.array([
.79, .79, .72, .72, .62, .62, 1.07, 1.07, .87, .87, .89, .89,
.79, .79
]) / 10.0
elif num_keypoints == 6:
self.sigmas = np.array(
[
.25,.25,.25,.25,.25,.25
], dtype=np.float32
)/ 10.0
else:
raise ValueError(f'Unsupported keypoints number {num_keypoints}')
def forward(self,
pred,
target,
valid,
area,
weight=None,
avg_factor=None,
reduction_override=None):
"""Forward function.
Args:
pred (torch.Tensor): The prediction.
target (torch.Tensor): The learning target of the prediction.
valid (torch.Tensor): The visible flag of the target pose.
area (torch.Tensor): The area of the target pose.
weight (torch.Tensor, optional): The weight of loss for each
prediction. Defaults to None.
avg_factor (int, optional): Average factor that is used to average
the loss. Defaults to None.
reduction_override (str, optional): The reduction method used to
override the original reduction method of the loss.
Defaults to None. Options are "none", "mean" and "sum".
"""
assert reduction_override in (None, 'none', 'mean', 'sum')
reduction = (reduction_override
if reduction_override else self.reduction)
if (weight is not None) and (not torch.any(weight > 0)) and (
reduction != 'none'):
if pred.dim() == weight.dim() + 1:
weight = weight.unsqueeze(1)
return (pred * weight).sum() # 0
if weight is not None and weight.dim() > 1:
# TODO: remove this in the future
# reduce the weight of shape (n, 4) to (n,) to match the
# iou_loss of shape (n,)
assert weight.shape == pred.shape
weight = weight.mean(-1)
loss = self.loss_weight * oks_loss(pred,
target,
valid=valid,
area=area,
linear=self.linear,
sigmas=self.sigmas,
eps=self.eps)
return loss
|