File size: 13,536 Bytes
d7e58f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
import torch
import random
from torch import nn, Tensor
import os
import numpy as np
import math
import torch.nn.functional as F
from torch import nn


class PoseProjector(nn.Module):
    def __init__(self, hidden_dim=256, num_body_points=17):
        super().__init__()
        self.num_body_points = num_body_points
        self.V_projector = nn.Linear(hidden_dim, num_body_points)
        nn.init.constant_(self.V_projector.bias.data, 0)
        self.Z_projector = MLP(hidden_dim, hidden_dim, num_body_points * 2, 3)
        nn.init.constant_(self.Z_projector.layers[-1].weight.data, 0)
        nn.init.constant_(self.Z_projector.layers[-1].bias.data, 0)

    def forward(self, hs):
        """_summary_

        Args:
            hs (_type_): ..., bs, nq, hidden_dim
        """
        Z = self.Z_projector(hs)  # ..., bs, nq, 34
        V = self.V_projector(hs)  # ..., bs, nq, 17
        return Z, V


def gen_encoder_output_proposals(memory: Tensor,
                                 memory_padding_mask: Tensor,
                                 spatial_shapes: Tensor,
                                 learnedwh=None):
    """
    Input:
        - memory: bs, \sum{hw}, d_model
        - memory_padding_mask: bs, \sum{hw}
        - spatial_shapes: nlevel, 2
        - learnedwh: 2
    Output:
        - output_memory: bs, \sum{hw}, d_model
        - output_proposals: bs, \sum{hw}, 4
    """
    N_, S_, C_ = memory.shape
    base_scale = 4.0
    proposals = []
    _cur = 0
    for lvl, (H_, W_) in enumerate(spatial_shapes):
        mask_flatten_ = memory_padding_mask[:, _cur:(_cur + H_ * W_)].view(
            N_, H_, W_, 1)
        valid_H = torch.sum(~mask_flatten_[:, :, 0, 0], 1)
        valid_W = torch.sum(~mask_flatten_[:, 0, :, 0], 1)

        grid_y, grid_x = torch.meshgrid(
            torch.linspace(0,
                           H_ - 1,
                           H_,
                           dtype=torch.float32,
                           device=memory.device),
            torch.linspace(0,
                           W_ - 1,
                           W_,
                           dtype=torch.float32,
                           device=memory.device))
        grid = torch.cat(
            [grid_x.unsqueeze(-1), grid_y.unsqueeze(-1)], -1)  # H_, W_, 2

        scale = torch.cat([valid_W.unsqueeze(-1),
                           valid_H.unsqueeze(-1)], 1).view(N_, 1, 1, 2)
        grid = (grid.unsqueeze(0).expand(N_, -1, -1, -1) + 0.5) / scale

        if learnedwh is not None:
            wh = torch.ones_like(grid) * learnedwh.sigmoid() * (2.0**lvl)
        else:
            wh = torch.ones_like(grid) * 0.05 * (2.0**lvl)
        proposal = torch.cat((grid, wh), -1).view(N_, -1, 4)
        proposals.append(proposal)
        _cur += (H_ * W_)
    # import pdb; pdb.set_trace()
    output_proposals = torch.cat(proposals, 1)
    output_proposals_valid = ((output_proposals > 0.01) &
                              (output_proposals < 0.99)).all(-1, keepdim=True)
    output_proposals = torch.log(output_proposals /
                                 (1 - output_proposals))  # unsigmoid
    output_proposals = output_proposals.masked_fill(
        memory_padding_mask.unsqueeze(-1), float('inf'))
    output_proposals = output_proposals.masked_fill(~output_proposals_valid,
                                                    float('inf'))

    output_memory = memory
    output_memory = output_memory.masked_fill(
        memory_padding_mask.unsqueeze(-1), float(0))
    output_memory = output_memory.masked_fill(~output_proposals_valid,
                                              float(0))
    return output_memory, output_proposals


class RandomBoxPerturber():
    def __init__(self,
                 x_noise_scale=0.2,
                 y_noise_scale=0.2,
                 w_noise_scale=0.2,
                 h_noise_scale=0.2) -> None:
        self.noise_scale = torch.Tensor(
            [x_noise_scale, y_noise_scale, w_noise_scale, h_noise_scale])

    def __call__(self, refanchors: Tensor) -> Tensor:
        nq, bs, query_dim = refanchors.shape
        device = refanchors.device

        noise_raw = torch.rand_like(refanchors)
        noise_scale = self.noise_scale.to(device)[:query_dim]

        new_refanchors = refanchors * (1 + (noise_raw - 0.5) * noise_scale)
        return new_refanchors.clamp_(0, 1)


def sigmoid_focal_loss(inputs,
                       targets,
                       num_boxes,
                       alpha: float = 0.25,
                       gamma: float = 2):
    """
    Loss used in RetinaNet for dense detection: https://arxiv.org/abs/1708.02002.
    Args:
        inputs: A float tensor of arbitrary shape.
                The predictions for each example.
        targets: A float tensor with the same shape as inputs. Stores the binary
                 classification label for each element in inputs
                (0 for the negative class and 1 for the positive class).
        alpha: (optional) Weighting factor in range (0,1) to balance
                positive vs negative examples. Default = -1 (no weighting).
        gamma: Exponent of the modulating factor (1 - p_t) to
               balance easy vs hard examples.
    Returns:
        Loss tensor
    """
    prob = inputs.sigmoid()
    ce_loss = F.binary_cross_entropy_with_logits(inputs,
                                                 targets,
                                                 reduction='none')
    p_t = prob * targets + (1 - prob) * (1 - targets)
    loss = ce_loss * ((1 - p_t)**gamma)

    if alpha >= 0:
        alpha_t = alpha * targets + (1 - alpha) * (1 - targets)
        loss = alpha_t * loss

    return loss.mean(1).sum() / num_boxes


class MLP(nn.Module):
    """Very simple multi-layer perceptron (also called FFN)"""
    def __init__(self, input_dim, hidden_dim, output_dim, num_layers):
        super().__init__()
        self.num_layers = num_layers
        h = [hidden_dim] * (num_layers - 1)
        self.layers = nn.ModuleList(
            nn.Linear(n, k) for n, k in zip([input_dim] + h, h + [output_dim]))

    def forward(self, x):
        for i, layer in enumerate(self.layers):
            x = F.relu(layer(x)) if i < self.num_layers - 1 else layer(x)
        return x


def _get_activation_fn(activation, d_model=256, batch_dim=0):
    """Return an activation function given a string."""
    if activation == 'relu':
        return F.relu
    if activation == 'gelu':
        return F.gelu
    if activation == 'glu':
        return F.glu
    if activation == 'prelu':
        return nn.PReLU()
    if activation == 'selu':
        return F.selu
    raise RuntimeError(F'activation should be relu/gelu, not {activation}.')


def gen_sineembed_for_position(pos_tensor):
    # n_query, bs, _ = pos_tensor.size()
    # sineembed_tensor = torch.zeros(n_query, bs, 256)
    scale = 2 * math.pi
    dim_t = torch.arange(128, dtype=torch.float32, device=pos_tensor.device)
    dim_t = 10000**(2 * (dim_t // 2) / 128)
    x_embed = pos_tensor[:, :, 0] * scale
    y_embed = pos_tensor[:, :, 1] * scale
    pos_x = x_embed[:, :, None] / dim_t
    pos_y = y_embed[:, :, None] / dim_t
    pos_x = torch.stack((pos_x[:, :, 0::2].sin(), pos_x[:, :, 1::2].cos()),
                        dim=3).flatten(2)
    pos_y = torch.stack((pos_y[:, :, 0::2].sin(), pos_y[:, :, 1::2].cos()),
                        dim=3).flatten(2)
    if pos_tensor.size(-1) == 2:
        pos = torch.cat((pos_y, pos_x), dim=2)
    elif pos_tensor.size(-1) == 4:
        w_embed = pos_tensor[:, :, 2] * scale
        pos_w = w_embed[:, :, None] / dim_t
        pos_w = torch.stack((pos_w[:, :, 0::2].sin(), pos_w[:, :, 1::2].cos()),
                            dim=3).flatten(2)

        h_embed = pos_tensor[:, :, 3] * scale
        pos_h = h_embed[:, :, None] / dim_t
        pos_h = torch.stack((pos_h[:, :, 0::2].sin(), pos_h[:, :, 1::2].cos()),
                            dim=3).flatten(2)

        pos = torch.cat((pos_y, pos_x, pos_w, pos_h), dim=2)
    else:
        raise ValueError('Unknown pos_tensor shape(-1):{}'.format(
            pos_tensor.size(-1)))
    return pos


def oks_overlaps(kpt_preds, kpt_gts, kpt_valids, kpt_areas, sigmas):
    sigmas = kpt_preds.new_tensor(sigmas)
    variances = (sigmas * 2)**2

    assert kpt_preds.size(0) == kpt_gts.size(0)
    kpt_preds = kpt_preds.reshape(-1, kpt_preds.size(-1) // 2, 2)
    kpt_gts = kpt_gts.reshape(-1, kpt_gts.size(-1) // 2, 2)

    squared_distance = (kpt_preds[:, :, 0] - kpt_gts[:, :, 0]) ** 2 + \
        (kpt_preds[:, :, 1] - kpt_gts[:, :, 1]) ** 2
    # import pdb
    # pdb.set_trace()
    # assert (kpt_valids.sum(-1) > 0).all()
    squared_distance0 = squared_distance / (kpt_areas[:, None] *
                                            variances[None, :] * 2)
    squared_distance1 = torch.exp(-squared_distance0)
    squared_distance1 = squared_distance1 * kpt_valids
    oks = squared_distance1.sum(dim=1) / (kpt_valids.sum(dim=1) + 1e-6)

    return oks


def oks_loss(pred,
             target,
             valid=None,
             area=None,
             linear=False,
             sigmas=None,
             eps=1e-6):
    """Oks loss.

    Computing the oks loss between a set of predicted poses and target poses.
    The loss is calculated as negative log of oks.
    Args:
        pred (torch.Tensor): Predicted poses of format (x1, y1, x2, y2, ...),
            shape (n, 2K).
        target (torch.Tensor): Corresponding gt poses, shape (n, 2K).
        linear (bool, optional): If True, use linear scale of loss instead of
            log scale. Default: False.
        eps (float): Eps to avoid log(0).
    Return:
        torch.Tensor: Loss tensor.
    """
    oks = oks_overlaps(pred, target, valid, area, sigmas).clamp(min=eps)
    if linear:
        loss = 1 - oks
    else:
        loss = -oks.log()
    loss = loss * valid.sum(-1) / (valid.sum(-1) + eps)
    return loss


class OKSLoss(nn.Module):
    """IoULoss.

    Computing the oks loss between a set of predicted poses and target poses.
    Args:
        linear (bool): If True, use linear scale of loss instead of log scale.
            Default: False.
        eps (float): Eps to avoid log(0).
        reduction (str): Options are "none", "mean" and "sum".
        loss_weight (float): Weight of loss.
    """
    def __init__(self,
                 linear=False,
                 num_keypoints=17,
                 eps=1e-6,
                 reduction='mean',
                 loss_weight=1.0):
        super(OKSLoss, self).__init__()
        self.linear = linear
        self.eps = eps
        self.reduction = reduction
        self.loss_weight = loss_weight
        if num_keypoints == 17:
            self.sigmas = np.array([
                .26, .25, .25, .35, .35, .79, .79, .72, .72, .62, .62, 1.07,
                1.07, .87, .87, .89, .89
            ],
                                   dtype=np.float32) / 10.0
        elif num_keypoints == 14:
            self.sigmas = np.array([
                .79, .79, .72, .72, .62, .62, 1.07, 1.07, .87, .87, .89, .89,
                .79, .79
            ]) / 10.0
        elif num_keypoints == 6:
            self.sigmas = np.array(
                [
                    .25,.25,.25,.25,.25,.25
                ], dtype=np.float32
            )/ 10.0
        else:
            raise ValueError(f'Unsupported keypoints number {num_keypoints}')

    def forward(self,
                pred,
                target,
                valid,
                area,
                weight=None,
                avg_factor=None,
                reduction_override=None):
        """Forward function.

        Args:
            pred (torch.Tensor): The prediction.
            target (torch.Tensor): The learning target of the prediction.
            valid (torch.Tensor): The visible flag of the target pose.
            area (torch.Tensor): The area of the target pose.
            weight (torch.Tensor, optional): The weight of loss for each
                prediction. Defaults to None.
            avg_factor (int, optional): Average factor that is used to average
                the loss. Defaults to None.
            reduction_override (str, optional): The reduction method used to
                override the original reduction method of the loss.
                Defaults to None. Options are "none", "mean" and "sum".
        """
        assert reduction_override in (None, 'none', 'mean', 'sum')
        reduction = (reduction_override
                     if reduction_override else self.reduction)
        if (weight is not None) and (not torch.any(weight > 0)) and (
                reduction != 'none'):
            if pred.dim() == weight.dim() + 1:
                weight = weight.unsqueeze(1)
            return (pred * weight).sum()  # 0
        if weight is not None and weight.dim() > 1:
            # TODO: remove this in the future
            # reduce the weight of shape (n, 4) to (n,) to match the
            # iou_loss of shape (n,)
            assert weight.shape == pred.shape
            weight = weight.mean(-1)
        loss = self.loss_weight * oks_loss(pred,
                                           target,
                                           valid=valid,
                                           area=area,
                                           linear=self.linear,
                                           sigmas=self.sigmas,
                                           eps=self.eps)
        return loss