Spaces:
Sleeping
Sleeping
File size: 30,365 Bytes
d7e58f0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 |
# Copyright (c) OpenMMLab. All rights reserved.
import math
import warnings
import torch
import torch.nn as nn
from mmcv.cnn.bricks.registry import (
TRANSFORMER_LAYER,
TRANSFORMER_LAYER_SEQUENCE,
)
from mmcv.cnn.bricks.transformer import (
BaseTransformerLayer,
TransformerLayerSequence,
build_transformer_layer_sequence,
)
from mmcv.runner.base_module import BaseModule
# from mmcv.utils import to_2tuple
from torch.nn.init import normal_
# from mmdet.models.utils.builder import TRANSFORMER
from .builder import TRANSFORMER
# import torch.nn.functional as F
from mmcv.cnn import ( # build_activation_layer,; build_conv_layer,
build_norm_layer, xavier_init,
)
# from typing import Sequence
try:
from mmcv.ops.multi_scale_deform_attn import MultiScaleDeformableAttention
except ImportError:
warnings.warn(
'`MultiScaleDeformableAttention` in MMCV has been moved to '
'`mmcv.ops.multi_scale_deform_attn`, please update your MMCV')
from mmcv.cnn.bricks.transformer import MultiScaleDeformableAttention
def inverse_sigmoid(x, eps=1e-5):
"""Inverse function of sigmoid.
Args:
x (Tensor): The tensor to do the
inverse.
eps (float): EPS avoid numerical
overflow. Defaults 1e-5.
Returns:
Tensor: The x has passed the inverse
function of sigmoid, has same
shape with input.
"""
x = x.clamp(min=0, max=1)
x1 = x.clamp(min=eps)
x2 = (1 - x).clamp(min=eps)
return torch.log(x1 / x2)
@TRANSFORMER_LAYER.register_module()
class DetrTransformerDecoderLayer(BaseTransformerLayer):
"""Implements decoder layer in DETR transformer.
Args:
attn_cfgs (list[`mmcv.ConfigDict`] | list[dict] | dict )):
Configs for self_attention or cross_attention, the order
should be consistent with it in `operation_order`. If it is
a dict, it would be expand to the number of attention in
`operation_order`.
feedforward_channels (int): The hidden dimension for FFNs.
ffn_dropout (float): Probability of an element to be zeroed
in ffn. Default 0.0.
operation_order (tuple[str]): The execution order of operation
in transformer. Such as ('self_attn', 'norm', 'ffn', 'norm').
Default:None
act_cfg (dict): The activation config for FFNs. Default: `LN`
norm_cfg (dict): Config dict for normalization layer.
Default: `LN`.
ffn_num_fcs (int): The number of fully-connected layers in FFNs.
Default:2.
"""
def __init__(self,
attn_cfgs,
feedforward_channels,
ffn_dropout=0.0,
operation_order=None,
act_cfg=dict(type='ReLU', inplace=True),
norm_cfg=dict(type='LN'),
ffn_num_fcs=2,
**kwargs):
super(DetrTransformerDecoderLayer,
self).__init__(attn_cfgs=attn_cfgs,
feedforward_channels=feedforward_channels,
ffn_dropout=ffn_dropout,
operation_order=operation_order,
act_cfg=act_cfg,
norm_cfg=norm_cfg,
ffn_num_fcs=ffn_num_fcs,
**kwargs)
assert len(operation_order) == 6
assert set(operation_order) == set(
['self_attn', 'norm', 'cross_attn', 'ffn'])
@TRANSFORMER_LAYER_SEQUENCE.register_module()
class DetrTransformerEncoder(TransformerLayerSequence):
"""TransformerEncoder of DETR.
Args:
post_norm_cfg (dict): Config of last normalization layer. Default:
`LN`. Only used when `self.pre_norm` is `True`
"""
def __init__(self, *args, post_norm_cfg=dict(type='LN'), **kwargs):
super(DetrTransformerEncoder, self).__init__(*args, **kwargs)
if post_norm_cfg is not None:
self.post_norm = build_norm_layer(
post_norm_cfg, self.embed_dims)[1] if self.pre_norm else None
else:
assert not self.pre_norm, f'Use prenorm in ' \
f'{self.__class__.__name__},' \
f'Please specify post_norm_cfg'
self.post_norm = None
def forward(self, *args, **kwargs):
"""Forward function for `TransformerCoder`.
Returns:
Tensor: forwarded results with shape [num_query, bs, embed_dims].
"""
x = super(DetrTransformerEncoder, self).forward(*args, **kwargs)
if self.post_norm is not None:
x = self.post_norm(x)
return x
@TRANSFORMER_LAYER_SEQUENCE.register_module()
class DetrTransformerDecoder(TransformerLayerSequence):
"""Implements the decoder in DETR transformer.
Args:
return_intermediate (bool): Whether to return intermediate outputs.
post_norm_cfg (dict): Config of last normalization layer. Default:
`LN`.
"""
def __init__(self,
*args,
post_norm_cfg=dict(type='LN'),
return_intermediate=False,
**kwargs):
super(DetrTransformerDecoder, self).__init__(*args, **kwargs)
self.return_intermediate = return_intermediate
if post_norm_cfg is not None:
self.post_norm = build_norm_layer(post_norm_cfg,
self.embed_dims)[1]
else:
self.post_norm = None
def forward(self, query, *args, **kwargs):
"""Forward function for `TransformerDecoder`.
Args:
query (Tensor): Input query with shape
`(num_query, bs, embed_dims)`.
Returns:
Tensor: Results with shape [1, num_query, bs, embed_dims] when
return_intermediate is `False`, otherwise it has shape
[num_layers, num_query, bs, embed_dims].
"""
if not self.return_intermediate:
x = super().forward(query, *args, **kwargs)
if self.post_norm:
x = self.post_norm(x)[None]
return x
intermediate = []
for layer in self.layers:
query = layer(query, *args, **kwargs)
if self.return_intermediate:
if self.post_norm is not None:
intermediate.append(self.post_norm(query))
else:
intermediate.append(query)
return torch.stack(intermediate)
@TRANSFORMER_LAYER_SEQUENCE.register_module()
class DeformableDetrTransformerDecoder(TransformerLayerSequence):
"""Implements the decoder in DETR transformer.
Args:
return_intermediate (bool): Whether to return intermediate outputs.
coder_norm_cfg (dict): Config of last normalization layer. Default:
`LN`.
"""
def __init__(self, *args, return_intermediate=False, **kwargs):
super(DeformableDetrTransformerDecoder, self).__init__(*args, **kwargs)
self.return_intermediate = return_intermediate
def forward(self,
query,
*args,
reference_points=None,
valid_ratios=None,
reg_branches=None,
**kwargs):
"""Forward function for `TransformerDecoder`.
Args:
query (Tensor): Input query with shape
`(num_query, bs, embed_dims)`.
reference_points (Tensor): The reference
points of offset. has shape
(bs, num_query, 4) when as_two_stage,
otherwise has shape ((bs, num_query, 2).
valid_ratios (Tensor): The radios of valid
points on the feature map, has shape
(bs, num_levels, 2)
reg_branch: (obj:`nn.ModuleList`): Used for
refining the regression results. Only would
be passed when with_box_refine is True,
otherwise would be passed a `None`.
Returns:
Tensor: Results with shape [1, num_query, bs, embed_dims] when
return_intermediate is `False`, otherwise it has shape
[num_layers, num_query, bs, embed_dims].
"""
output = query
intermediate = []
intermediate_reference_points = []
for lid, layer in enumerate(self.layers):
if reference_points.shape[-1] == 4:
reference_points_input = reference_points[:, :, None] * \
torch.cat([valid_ratios, valid_ratios], -1)[:, None]
else:
assert reference_points.shape[-1] == 2
reference_points_input = reference_points[:, :, None] * \
valid_ratios[:, None]
output = layer(output,
*args,
reference_points=reference_points_input,
**kwargs)
output = output.permute(1, 0, 2)
if reg_branches is not None:
tmp = reg_branches[lid](output)
if reference_points.shape[-1] == 4:
new_reference_points = tmp + inverse_sigmoid(
reference_points)
new_reference_points = new_reference_points.sigmoid()
else:
assert reference_points.shape[-1] == 2
new_reference_points = tmp
new_reference_points[..., :2] = tmp[
..., :2] + inverse_sigmoid(reference_points)
new_reference_points = new_reference_points.sigmoid()
reference_points = new_reference_points.detach()
output = output.permute(1, 0, 2)
if self.return_intermediate:
intermediate.append(output)
intermediate_reference_points.append(reference_points)
if self.return_intermediate:
return torch.stack(intermediate), torch.stack(
intermediate_reference_points)
return output, reference_points
@TRANSFORMER.register_module()
class Transformer(BaseModule):
"""Implements the DETR transformer.
Following the official DETR implementation, this module copy-paste
from torch.nn.Transformer with modifications:
* positional encodings are passed in MultiheadAttention
* extra LN at the end of encoder is removed
* decoder returns a stack of activations from all decoding layers
See `paper: End-to-End Object Detection with Transformers
<https://arxiv.org/pdf/2005.12872>`_ for details.
Args:
encoder (`mmcv.ConfigDict` | Dict): Config of
TransformerEncoder. Defaults to None.
decoder ((`mmcv.ConfigDict` | Dict)): Config of
TransformerDecoder. Defaults to None
init_cfg (obj:`mmcv.ConfigDict`): The Config for initialization.
Defaults to None.
"""
def __init__(self, encoder=None, decoder=None, init_cfg=None):
super(Transformer, self).__init__(init_cfg=init_cfg)
self.encoder = build_transformer_layer_sequence(encoder)
self.decoder = build_transformer_layer_sequence(decoder)
self.embed_dims = self.encoder.embed_dims
def init_weights(self):
# follow the official DETR to init parameters
for m in self.modules():
if hasattr(m, 'weight') and m.weight.dim() > 1:
xavier_init(m, distribution='uniform')
self._is_init = True
def forward(self, x, mask, query_embed, pos_embed):
"""Forward function for `Transformer`.
Args:
x (Tensor): Input query with shape [bs, c, h, w] where
c = embed_dims.
mask (Tensor): The key_padding_mask used for encoder and decoder,
with shape [bs, h, w].
query_embed (Tensor): The query embedding for decoder, with shape
[num_query, c].
pos_embed (Tensor): The positional encoding for encoder and
decoder, with the same shape as `x`.
Returns:
tuple[Tensor]: results of decoder containing the following tensor.
- out_dec: Output from decoder. If return_intermediate_dec \
is True output has shape [num_dec_layers, bs,
num_query, embed_dims], else has shape [1, bs, \
num_query, embed_dims].
- memory: Output results from encoder, with shape \
[bs, embed_dims, h, w].
"""
bs, c, h, w = x.shape
# use `view` instead of `flatten` for dynamically exporting to ONNX
x = x.view(bs, c, -1).permute(2, 0, 1) # [bs, c, h, w] -> [h*w, bs, c]
pos_embed = pos_embed.view(bs, c, -1).permute(2, 0, 1)
query_embed = query_embed.unsqueeze(1).repeat(
1, bs, 1) # [num_query, dim] -> [num_query, bs, dim]
mask = mask.view(bs, -1) # [bs, h, w] -> [bs, h*w]
memory = self.encoder(query=x,
key=None,
value=None,
query_pos=pos_embed,
query_key_padding_mask=mask)
target = torch.zeros_like(query_embed)
# out_dec: [num_layers, num_query, bs, dim]
out_dec = self.decoder(query=target,
key=memory,
value=memory,
key_pos=pos_embed,
query_pos=query_embed,
key_padding_mask=mask)
out_dec = out_dec.transpose(1, 2)
memory = memory.permute(1, 2, 0).reshape(bs, c, h, w)
return out_dec, memory
@TRANSFORMER.register_module()
class DeformableDetrTransformer(Transformer):
"""Implements the DeformableDETR transformer.
Args:
as_two_stage (bool): Generate query from encoder features.
Default: False.
num_feature_levels (int): Number of feature maps from FPN:
Default: 4.
two_stage_num_proposals (int): Number of proposals when set
`as_two_stage` as True. Default: 300.
"""
def __init__(self,
as_two_stage=False,
num_feature_levels=4,
two_stage_num_proposals=300,
**kwargs):
super(DeformableDetrTransformer, self).__init__(**kwargs)
self.as_two_stage = as_two_stage
self.num_feature_levels = num_feature_levels
self.two_stage_num_proposals = two_stage_num_proposals
self.embed_dims = self.encoder.embed_dims
self.init_layers()
def init_layers(self):
"""Initialize layers of the DeformableDetrTransformer."""
self.level_embeds = nn.Parameter(
torch.Tensor(self.num_feature_levels, self.embed_dims))
if self.as_two_stage:
self.enc_output = nn.Linear(self.embed_dims, self.embed_dims)
self.enc_output_norm = nn.LayerNorm(self.embed_dims)
self.pos_trans = nn.Linear(self.embed_dims * 2,
self.embed_dims * 2)
self.pos_trans_norm = nn.LayerNorm(self.embed_dims * 2)
else:
self.reference_points = nn.Linear(self.embed_dims, 2)
def init_weights(self):
"""Initialize the transformer weights."""
for p in self.parameters():
if p.dim() > 1:
nn.init.xavier_uniform_(p)
for m in self.modules():
if isinstance(m, MultiScaleDeformableAttention):
m.init_weights()
if not self.as_two_stage:
xavier_init(self.reference_points, distribution='uniform', bias=0.)
normal_(self.level_embeds)
def gen_encoder_output_proposals(self, memory, memory_padding_mask,
spatial_shapes):
"""Generate proposals from encoded memory.
Args:
memory (Tensor) : The output of encoder,
has shape (bs, num_key, embed_dim). num_key is
equal the number of points on feature map from
all level.
memory_padding_mask (Tensor): Padding mask for memory.
has shape (bs, num_key).
spatial_shapes (Tensor): The shape of all feature maps.
has shape (num_level, 2).
Returns:
tuple: A tuple of feature map and bbox prediction.
- output_memory (Tensor): The input of decoder, \
has shape (bs, num_key, embed_dim). num_key is \
equal the number of points on feature map from \
all levels.
- output_proposals (Tensor): The normalized proposal \
after a inverse sigmoid, has shape \
(bs, num_keys, 4).
"""
N, S, C = memory.shape
proposals = []
_cur = 0
for lvl, (H, W) in enumerate(spatial_shapes):
mask_flatten_ = memory_padding_mask[:, _cur:(_cur + H * W)].view(
N, H, W, 1)
valid_H = torch.sum(~mask_flatten_[:, :, 0, 0], 1)
valid_W = torch.sum(~mask_flatten_[:, 0, :, 0], 1)
grid_y, grid_x = torch.meshgrid(
torch.linspace(0,
H - 1,
H,
dtype=torch.float32,
device=memory.device),
torch.linspace(0,
W - 1,
W,
dtype=torch.float32,
device=memory.device))
grid = torch.cat([grid_x.unsqueeze(-1), grid_y.unsqueeze(-1)], -1)
scale = torch.cat([valid_W.unsqueeze(-1),
valid_H.unsqueeze(-1)], 1).view(N, 1, 1, 2)
grid = (grid.unsqueeze(0).expand(N, -1, -1, -1) + 0.5) / scale
wh = torch.ones_like(grid) * 0.05 * (2.0**lvl)
proposal = torch.cat((grid, wh), -1).view(N, -1, 4)
proposals.append(proposal)
_cur += (H * W)
output_proposals = torch.cat(proposals, 1)
output_proposals_valid = ((output_proposals > 0.01) &
(output_proposals < 0.99)).all(-1,
keepdim=True)
output_proposals = torch.log(output_proposals / (1 - output_proposals))
output_proposals = output_proposals.masked_fill(
memory_padding_mask.unsqueeze(-1), float('inf'))
output_proposals = output_proposals.masked_fill(
~output_proposals_valid, float('inf'))
output_memory = memory
output_memory = output_memory.masked_fill(
memory_padding_mask.unsqueeze(-1), float(0))
output_memory = output_memory.masked_fill(~output_proposals_valid,
float(0))
output_memory = self.enc_output_norm(self.enc_output(output_memory))
return output_memory, output_proposals
@staticmethod
def get_reference_points(spatial_shapes, valid_ratios, device):
"""Get the reference points used in decoder.
Args:
spatial_shapes (Tensor): The shape of all
feature maps, has shape (num_level, 2).
valid_ratios (Tensor): The radios of valid
points on the feature map, has shape
(bs, num_levels, 2)
device (obj:`device`): The device where
reference_points should be.
Returns:
Tensor: reference points used in decoder, has \
shape (bs, num_keys, num_levels, 2).
"""
reference_points_list = []
for lvl, (H, W) in enumerate(spatial_shapes):
# TODO check this 0.5
ref_y, ref_x = torch.meshgrid(
torch.linspace(0.5,
H - 0.5,
H,
dtype=torch.float32,
device=device),
torch.linspace(0.5,
W - 0.5,
W,
dtype=torch.float32,
device=device))
ref_y = ref_y.reshape(-1)[None] / (valid_ratios[:, None, lvl, 1] *
H)
ref_x = ref_x.reshape(-1)[None] / (valid_ratios[:, None, lvl, 0] *
W)
ref = torch.stack((ref_x, ref_y), -1)
reference_points_list.append(ref)
reference_points = torch.cat(reference_points_list, 1)
reference_points = reference_points[:, :, None] * valid_ratios[:, None]
return reference_points
def get_valid_ratio(self, mask):
"""Get the valid radios of feature maps of all level."""
_, H, W = mask.shape
valid_H = torch.sum(~mask[:, :, 0], 1)
valid_W = torch.sum(~mask[:, 0, :], 1)
valid_ratio_h = valid_H.float() / H
valid_ratio_w = valid_W.float() / W
valid_ratio = torch.stack([valid_ratio_w, valid_ratio_h], -1)
return valid_ratio
def get_proposal_pos_embed(self,
proposals,
num_pos_feats=128,
temperature=10000):
"""Get the position embedding of proposal."""
scale = 2 * math.pi
dim_t = torch.arange(num_pos_feats,
dtype=torch.float32,
device=proposals.device)
dim_t = temperature**(2 * (dim_t // 2) / num_pos_feats)
# N, L, 4
proposals = proposals.sigmoid() * scale
# N, L, 4, 128
pos = proposals[:, :, :, None] / dim_t
# N, L, 4, 64, 2
pos = torch.stack((pos[:, :, :, 0::2].sin(), pos[:, :, :, 1::2].cos()),
dim=4).flatten(2)
return pos
def forward(self,
mlvl_feats,
mlvl_masks,
query_embed,
mlvl_pos_embeds,
reg_branches=None,
cls_branches=None,
smpl_branches=None,
**kwargs):
"""Forward function for `Transformer`.
Args:
mlvl_feats (list(Tensor)): Input queries from
different level. Each element has shape
[bs, embed_dims, h, w].
mlvl_masks (list(Tensor)): The key_padding_mask from
different level used for encoder and decoder,
each element has shape [bs, h, w].
query_embed (Tensor): The query embedding for decoder,
with shape [num_query, c].
mlvl_pos_embeds (list(Tensor)): The positional encoding
of feats from different level, has the shape
[bs, embed_dims, h, w].
reg_branches (obj:`nn.ModuleList`): Regression heads for
feature maps from each decoder layer. Only would
be passed when
`with_box_refine` is True. Default to None.
cls_branches (obj:`nn.ModuleList`): Classification heads
for feature maps from each decoder layer. Only would
be passed when `as_two_stage`
is True. Default to None.
Returns:
tuple[Tensor]: results of decoder containing the following tensor.
- inter_states: Outputs from decoder. If
return_intermediate_dec is True output has shape \
(num_dec_layers, bs, num_query, embed_dims), else has \
shape (1, bs, num_query, embed_dims).
- init_reference_out: The initial value of reference \
points, has shape (bs, num_queries, 4).
- inter_references_out: The internal value of reference \
points in decoder, has shape \
(num_dec_layers, bs,num_query, embed_dims)
- enc_outputs_class: The classification score of \
proposals generated from \
encoder's feature maps, has shape \
(batch, h*w, num_classes). \
Only would be returned when `as_two_stage` is True, \
otherwise None.
- enc_outputs_coord_unact: The regression results \
generated from encoder's feature maps., has shape \
(batch, h*w, 4). Only would \
be returned when `as_two_stage` is True, \
otherwise None.
"""
assert self.as_two_stage or query_embed is not None
feat_flatten = []
mask_flatten = []
lvl_pos_embed_flatten = []
spatial_shapes = []
for lvl, (feat, mask, pos_embed) in enumerate(
zip(mlvl_feats, mlvl_masks, mlvl_pos_embeds)):
bs, c, h, w = feat.shape
spatial_shape = (h, w)
spatial_shapes.append(spatial_shape)
feat = feat.flatten(2).transpose(1, 2)
mask = mask.flatten(1)
pos_embed = pos_embed.flatten(2).transpose(1, 2)
lvl_pos_embed = pos_embed + self.level_embeds[lvl].view(1, 1, -1)
lvl_pos_embed_flatten.append(lvl_pos_embed)
feat_flatten.append(feat)
mask_flatten.append(mask)
feat_flatten = torch.cat(feat_flatten, 1)
mask_flatten = torch.cat(mask_flatten, 1)
lvl_pos_embed_flatten = torch.cat(lvl_pos_embed_flatten, 1)
spatial_shapes = torch.as_tensor(spatial_shapes,
dtype=torch.long,
device=feat_flatten.device)
level_start_index = torch.cat((spatial_shapes.new_zeros(
(1, )), spatial_shapes.prod(1).cumsum(0)[:-1]))
valid_ratios = torch.stack(
[self.get_valid_ratio(m) for m in mlvl_masks], 1)
reference_points = \
self.get_reference_points(spatial_shapes,
valid_ratios,
device=feat.device)
feat_flatten = feat_flatten.permute(1, 0, 2) # (H*W, bs, embed_dims)
lvl_pos_embed_flatten = lvl_pos_embed_flatten.permute(
1, 0, 2) # (H*W, bs, embed_dims)
memory = self.encoder(query=feat_flatten,
key=None,
value=None,
query_pos=lvl_pos_embed_flatten,
query_key_padding_mask=mask_flatten,
spatial_shapes=spatial_shapes,
reference_points=reference_points,
level_start_index=level_start_index,
valid_ratios=valid_ratios,
**kwargs)
memory = memory.permute(1, 0, 2)
bs, _, c = memory.shape
if self.as_two_stage:
output_memory, output_proposals = \
self.gen_encoder_output_proposals(
memory, mask_flatten, spatial_shapes)
enc_outputs_class = cls_branches[self.decoder.num_layers](
output_memory)
enc_outputs_coord_unact = \
reg_branches[
self.decoder.num_layers](output_memory) + output_proposals
topk = self.two_stage_num_proposals
# We only use the first channel in enc_outputs_class as foreground,
# the other (num_classes - 1) channels are actually not used.
# Its targets are set to be 0s, which indicates the first
# class (foreground) because we use [0, num_classes - 1] to
# indicate class labels, background class is indicated by
# num_classes (similar convention in RPN).
# See https://github.com/open-mmlab/mmdetection/blob/master/mmdet/models/dense_heads/deformable_detr_head.py#L241 # noqa
# This follows the official implementation of Deformable DETR.
topk_proposals = torch.topk(enc_outputs_class[..., 0], topk,
dim=1)[1]
topk_coords_unact = torch.gather(
enc_outputs_coord_unact, 1,
topk_proposals.unsqueeze(-1).repeat(1, 1, 4))
topk_coords_unact = topk_coords_unact.detach()
reference_points = topk_coords_unact.sigmoid()
init_reference_out = reference_points
pos_trans_out = self.pos_trans_norm(
self.pos_trans(self.get_proposal_pos_embed(topk_coords_unact)))
query_pos, query = torch.split(pos_trans_out, c, dim=2)
else:
query_pos, query = torch.split(query_embed, c, dim=1)
query_pos = query_pos.unsqueeze(0).expand(bs, -1, -1)
query = query.unsqueeze(0).expand(bs, -1, -1)
reference_points = self.reference_points(query_pos).sigmoid()
init_reference_out = reference_points
# decoder
query = query.permute(1, 0, 2)
memory = memory.permute(1, 0, 2)
query_pos = query_pos.permute(1, 0, 2)
inter_states, inter_references = self.decoder(
query=query,
key=None,
value=memory,
query_pos=query_pos,
key_padding_mask=mask_flatten,
reference_points=reference_points,
spatial_shapes=spatial_shapes,
level_start_index=level_start_index,
valid_ratios=valid_ratios,
reg_branches=reg_branches,
smpl_branches=smpl_branches,
**kwargs)
inter_references_out = inter_references
if self.as_two_stage:
return inter_states, init_reference_out,\
inter_references_out, enc_outputs_class,\
enc_outputs_coord_unact
return inter_states, init_reference_out, \
inter_references_out, None, None
|