Spaces:
Sleeping
Sleeping
File size: 17,167 Bytes
d7e58f0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 |
"""This script is based on the release codes:
"HybrIK: A Hybrid Analytical-Neural Inverse Kinematics Solution for 3D Human
Pose and Shape Estimation. CVPR 2021"
(https://github.com/Jeff-sjtu/HybrIK).
"""
from __future__ import absolute_import, division, print_function
import torch
from detrsmpl.utils.transforms import aa_to_rotmat
def batch_inverse_kinematics_transform(pose_skeleton,
global_orient,
phis,
rest_pose,
children,
parents,
dtype=torch.float32,
train=False,
leaf_thetas=None):
"""Applies inverse kinematics transform to joints in a batch.
Args:
pose_skeleton (torch.tensor):
Locations of estimated pose skeleton with shape (Bx29x3)
global_orient (torch.tensor|none):
Tensor of global rotation matrices with shape (Bx1x3x3)
phis (torch.tensor):
Rotation on bone axis parameters with shape (Bx23x2)
rest_pose (torch.tensor):
Locations of rest (Template) pose with shape (Bx29x3)
children (List[int]): list of indexes of kinematic children with len 29
parents (List[int]): list of indexes of kinematic parents with len 29
dtype (torch.dtype, optional):
Data type of the created tensors. Default: torch.float32
train (bool):
Store True in train mode. Default: False
leaf_thetas (torch.tensor, optional):
Rotation matrixes for 5 leaf joints (Bx5x3x3). Default: None
Returns:
rot_mats (torch.tensor):
Rotation matrics of all joints with shape (Bx29x3x3)
rotate_rest_pose (torch.tensor):
Locations of rotated rest/ template pose with shape (Bx29x3)
"""
batch_size = pose_skeleton.shape[0]
device = pose_skeleton.device
rel_rest_pose = rest_pose.clone()
# vec_t_k = t_k - t_pa(k)
rel_rest_pose[:, 1:] -= rest_pose[:, parents[1:]].clone()
rel_rest_pose = torch.unsqueeze(rel_rest_pose, dim=-1)
# rotate the T pose
rotate_rest_pose = torch.zeros_like(rel_rest_pose)
# set up the root
rotate_rest_pose[:, 0] = rel_rest_pose[:, 0]
rel_pose_skeleton = torch.unsqueeze(pose_skeleton.clone(), dim=-1).detach()
rel_pose_skeleton[:, 1:] -= rel_pose_skeleton[:, parents[1:]].clone()
rel_pose_skeleton[:, 0] = rel_rest_pose[:, 0]
# the predicted final pose
final_pose_skeleton = torch.unsqueeze(pose_skeleton.clone(), dim=-1)
if train:
final_pose_skeleton[:, 1:] -= \
final_pose_skeleton[:, parents[1:]].clone()
final_pose_skeleton[:, 0] = rel_rest_pose[:, 0]
else:
final_pose_skeleton += \
rel_rest_pose[:, 0:1] - final_pose_skeleton[:, 0:1]
rel_rest_pose = rel_rest_pose
rel_pose_skeleton = rel_pose_skeleton
final_pose_skeleton = final_pose_skeleton
rotate_rest_pose = rotate_rest_pose
assert phis.dim() == 3
phis = phis / (torch.norm(phis, dim=2, keepdim=True) + 1e-8)
if train:
global_orient_mat = batch_get_pelvis_orient(rel_pose_skeleton.clone(),
rel_rest_pose.clone(),
parents, children, dtype)
else:
global_orient_mat = batch_get_pelvis_orient_svd(
rel_pose_skeleton.clone(), rel_rest_pose.clone(), parents,
children, dtype)
rot_mat_chain = [global_orient_mat]
rot_mat_local = [global_orient_mat]
# leaf nodes rot_mats
if leaf_thetas is not None:
leaf_cnt = 0
leaf_rot_mats = leaf_thetas.view([batch_size, 5, 3, 3])
for i in range(1, parents.shape[0]):
if children[i] == -1:
# leaf nodes
if leaf_thetas is not None:
rot_mat = leaf_rot_mats[:, leaf_cnt, :, :]
leaf_cnt += 1
rotate_rest_pose[:, i] = rotate_rest_pose[:, parents[
i]] + torch.matmul(rot_mat_chain[parents[i]],
rel_rest_pose[:, i])
rot_mat_chain.append(
torch.matmul(rot_mat_chain[parents[i]], rot_mat))
rot_mat_local.append(rot_mat)
elif children[i] == -3:
# three children
rotate_rest_pose[:, i] = rotate_rest_pose[:, parents[i]] + \
torch.matmul(rot_mat_chain[parents[i]], rel_rest_pose[:, i])
spine_child = []
for c in range(1, parents.shape[0]):
if parents[c] == i and c not in spine_child:
spine_child.append(c)
# original
spine_child = []
for c in range(1, parents.shape[0]):
if parents[c] == i and c not in spine_child:
spine_child.append(c)
children_final_loc = []
children_rest_loc = []
for c in spine_child:
temp = final_pose_skeleton[:, c] - rotate_rest_pose[:, i]
children_final_loc.append(temp)
children_rest_loc.append(rel_rest_pose[:, c].clone())
rot_mat = batch_get_3children_orient_svd(children_final_loc,
children_rest_loc,
rot_mat_chain[parents[i]],
spine_child, dtype)
rot_mat_chain.append(
torch.matmul(rot_mat_chain[parents[i]], rot_mat))
rot_mat_local.append(rot_mat)
else:
# Naive Hybrik
if train:
# i: the index of k-th joint
child_rest_loc = rel_rest_pose[:, i]
child_final_loc = final_pose_skeleton[:, i]
# q_pa(k) = q_pa^2(k) + R_pa(k)(t_pa(k) - t_pa^2(k))
rotate_rest_pose[:, i] = rotate_rest_pose[:, parents[i]] + \
torch.matmul(rot_mat_chain[parents[i]], rel_rest_pose[:, i])
# Adaptive HybrIK
if not train:
# children[i]: the index of k-th joint
child_rest_loc = rel_rest_pose[:, children[i]]
child_final_loc = final_pose_skeleton[:, children[
i]] - rotate_rest_pose[:, i]
orig_vec = rel_pose_skeleton[:, children[i]]
template_vec = rel_rest_pose[:, children[i]]
norm_t = torch.norm(template_vec, dim=1, keepdim=True)
orig_vec = orig_vec * norm_t / torch.norm(
orig_vec, dim=1, keepdim=True)
diff = torch.norm(child_final_loc - orig_vec,
dim=1,
keepdim=True)
big_diff_idx = torch.where(diff > 15 / 1000)[0]
child_final_loc[big_diff_idx] = orig_vec[big_diff_idx]
# train: vec_p_k = R_pa(k).T * (p_k - p_pa(k))
# test: vec_p_k = R_pa(k).T * (p_k - q_pa(k))
child_final_loc = torch.matmul(
rot_mat_chain[parents[i]].transpose(1, 2), child_final_loc)
# (B, 1, 1)
child_final_norm = torch.norm(child_final_loc, dim=1, keepdim=True)
child_rest_norm = torch.norm(child_rest_loc, dim=1, keepdim=True)
# vec_n
axis = torch.cross(child_rest_loc, child_final_loc, dim=1)
axis_norm = torch.norm(axis, dim=1, keepdim=True)
# (B, 1, 1)
cos = torch.sum(
child_rest_loc * child_final_loc, dim=1,
keepdim=True) / (child_rest_norm * child_final_norm + 1e-8)
sin = axis_norm / (child_rest_norm * child_final_norm + 1e-8)
# (B, 3, 1)
axis = axis / (axis_norm + 1e-8)
# Convert location revolve to rot_mat by rodrigues
# (B, 1, 1)
rx, ry, rz = torch.split(axis, 1, dim=1)
zeros = torch.zeros((batch_size, 1, 1), dtype=dtype, device=device)
K = torch.cat([zeros, -rz, ry, rz, zeros, -rx, -ry, rx, zeros],
dim=1).view((batch_size, 3, 3))
ident = torch.eye(3, dtype=dtype, device=device).unsqueeze(dim=0)
rot_mat_loc = ident + sin * K + (1 - cos) * torch.bmm(K, K)
# Convert spin to rot_mat
# (B, 3, 1)
spin_axis = child_rest_loc / child_rest_norm
# (B, 1, 1)
rx, ry, rz = torch.split(spin_axis, 1, dim=1)
zeros = torch.zeros((batch_size, 1, 1), dtype=dtype, device=device)
K = torch.cat([zeros, -rz, ry, rz, zeros, -rx, -ry, rx, zeros],
dim=1).view((batch_size, 3, 3))
ident = torch.eye(3, dtype=dtype, device=device).unsqueeze(dim=0)
# (B, 1, 1)
cos, sin = torch.split(phis[:, i - 1], 1, dim=1)
cos = torch.unsqueeze(cos, dim=2)
sin = torch.unsqueeze(sin, dim=2)
rot_mat_spin = ident + sin * K + (1 - cos) * torch.bmm(K, K)
rot_mat = torch.matmul(rot_mat_loc, rot_mat_spin)
rot_mat_chain.append(
torch.matmul(rot_mat_chain[parents[i]], rot_mat))
rot_mat_local.append(rot_mat)
# (B, K + 1, 3, 3)
rot_mats = torch.stack(rot_mat_local, dim=1)
return rot_mats, rotate_rest_pose.squeeze(-1)
def batch_get_pelvis_orient_svd(rel_pose_skeleton, rel_rest_pose, parents,
children, dtype):
"""Get pelvis orientation svd for batch data.
Args:
rel_pose_skeleton (torch.tensor):
Locations of root-normalized pose skeleton with shape (Bx29x3)
rel_rest_pose (torch.tensor):
Locations of rest/ template pose with shape (Bx29x3)
parents (List[int]): list of indexes of kinematic parents with len 29
children (List[int]): list of indexes of kinematic children with len 29
dtype (torch.dtype, optional):
Data type of the created tensors, the default is torch.float32
Returns:
rot_mat (torch.tensor):
Rotation matrix of pelvis with shape (Bx3x3)
"""
pelvis_child = [int(children[0])]
for i in range(1, parents.shape[0]):
if parents[i] == 0 and i not in pelvis_child:
pelvis_child.append(i)
rest_mat = []
target_mat = []
for child in pelvis_child:
rest_mat.append(rel_rest_pose[:, child].clone())
target_mat.append(rel_pose_skeleton[:, child].clone())
rest_mat = torch.cat(rest_mat, dim=2)
target_mat = torch.cat(target_mat, dim=2)
S = rest_mat.bmm(target_mat.transpose(1, 2))
mask_zero = S.sum(dim=(1, 2))
S_non_zero = S[mask_zero != 0].reshape(-1, 3, 3)
U, _, V = torch.svd(S_non_zero)
rot_mat = torch.zeros_like(S)
rot_mat[mask_zero == 0] = torch.eye(3, device=S.device)
rot_mat_non_zero = torch.bmm(V, U.transpose(1, 2))
rot_mat[mask_zero != 0] = rot_mat_non_zero
assert torch.sum(torch.isnan(rot_mat)) == 0, ('rot_mat', rot_mat)
return rot_mat
def batch_get_pelvis_orient(rel_pose_skeleton, rel_rest_pose, parents,
children, dtype):
"""Get pelvis orientation for batch data.
Args:
rel_pose_skeleton (torch.tensor):
Locations of root-normalized pose skeleton with shape (Bx29x3)
rel_rest_pose (torch.tensor):
Locations of rest/ template pose with shape (Bx29x3)
parents (List[int]): list of indexes of kinematic parents with len 29
children (List[int]): list of indexes of kinematic children with len 29
dtype (torch.dtype, optional):
Data type of the created tensors, the default is torch.float32
Returns:
rot_mat (torch.tensor):
Rotation matrix of pelvis with shape (Bx3x3)
"""
batch_size = rel_pose_skeleton.shape[0]
device = rel_pose_skeleton.device
assert children[0] == 3
pelvis_child = [int(children[0])]
for i in range(1, parents.shape[0]):
if parents[i] == 0 and i not in pelvis_child:
pelvis_child.append(i)
spine_final_loc = rel_pose_skeleton[:, int(children[0])].clone()
spine_rest_loc = rel_rest_pose[:, int(children[0])].clone()
# spine_norm = torch.norm(spine_final_loc, dim=1, keepdim=True)
# spine_norm = spine_final_loc / (spine_norm + 1e-8)
# rot_mat_spine = vectors2rotmat(spine_rest_loc, spine_final_loc, dtype)
# (B, 1, 1)
vec_final_norm = torch.norm(spine_final_loc, dim=1, keepdim=True)
vec_rest_norm = torch.norm(spine_rest_loc, dim=1, keepdim=True)
spine_norm = spine_final_loc / (vec_final_norm + 1e-8)
# (B, 3, 1)
axis = torch.cross(spine_rest_loc, spine_final_loc, dim=1)
axis_norm = torch.norm(axis, dim=1, keepdim=True)
axis = axis / (axis_norm + 1e-8)
angle = torch.arccos(
torch.sum(spine_rest_loc * spine_final_loc, dim=1, keepdim=True) /
(vec_rest_norm * vec_final_norm + 1e-8))
axis_angle = (angle * axis).squeeze()
# aa to rotmat
rot_mat_spine = aa_to_rotmat(axis_angle)
assert torch.sum(torch.isnan(rot_mat_spine)) == 0, ('rot_mat_spine',
rot_mat_spine)
center_final_loc = 0
center_rest_loc = 0
for child in pelvis_child:
if child == int(children[0]):
continue
center_final_loc = center_final_loc + rel_pose_skeleton[:,
child].clone()
center_rest_loc = center_rest_loc + rel_rest_pose[:, child].clone()
center_final_loc = center_final_loc / (len(pelvis_child) - 1)
center_rest_loc = center_rest_loc / (len(pelvis_child) - 1)
center_rest_loc = torch.matmul(rot_mat_spine, center_rest_loc)
center_final_loc = center_final_loc - torch.sum(
center_final_loc * spine_norm, dim=1, keepdim=True) * spine_norm
center_rest_loc = center_rest_loc - torch.sum(
center_rest_loc * spine_norm, dim=1, keepdim=True) * spine_norm
center_final_loc_norm = torch.norm(center_final_loc, dim=1, keepdim=True)
center_rest_loc_norm = torch.norm(center_rest_loc, dim=1, keepdim=True)
# (B, 3, 1)
axis = torch.cross(center_rest_loc, center_final_loc, dim=1)
axis_norm = torch.norm(axis, dim=1, keepdim=True)
# (B, 1, 1)
cos = torch.sum(
center_rest_loc * center_final_loc, dim=1,
keepdim=True) / (center_rest_loc_norm * center_final_loc_norm + 1e-8)
sin = axis_norm / (center_rest_loc_norm * center_final_loc_norm + 1e-8)
assert torch.sum(torch.isnan(cos)) == 0, ('cos', cos)
assert torch.sum(torch.isnan(sin)) == 0, ('sin', sin)
# (B, 3, 1)
axis = axis / (axis_norm + 1e-8)
# Convert location revolve to rot_mat by rodrigues
# (B, 1, 1)
rx, ry, rz = torch.split(axis, 1, dim=1)
zeros = torch.zeros((batch_size, 1, 1), dtype=dtype, device=device)
K = torch.cat([zeros, -rz, ry, rz, zeros, -rx, -ry, rx, zeros], dim=1) \
.view((batch_size, 3, 3))
ident = torch.eye(3, dtype=dtype, device=device).unsqueeze(dim=0)
rot_mat_center = ident + sin * K + (1 - cos) * torch.bmm(K, K)
rot_mat = torch.matmul(rot_mat_center, rot_mat_spine)
return rot_mat
def batch_get_3children_orient_svd(rel_pose_skeleton, rel_rest_pose,
rot_mat_chain_parent, children_list, dtype):
"""Get pelvis orientation for batch data.
Args:
rel_pose_skeleton (torch.tensor):
Locations of root-normalized pose skeleton with shape (Bx29x3)
rel_rest_pose (torch.tensor):
Locations of rest/ template pose with shape (Bx29x3)
rot_mat_chain_parents (torch.tensor):
parent's rotation matrix with shape (Bx3x3)
children (List[int]): list of indexes of kinematic children with len 29
dtype (torch.dtype, optional):
Data type of the created tensors, the default is torch.float32
Returns:
rot_mat (torch.tensor):
Child's rotation matrix with shape (Bx3x3)
"""
rest_mat = []
target_mat = []
for c, child in enumerate(children_list):
if isinstance(rel_pose_skeleton, list):
target = rel_pose_skeleton[c].clone()
template = rel_rest_pose[c].clone()
else:
target = rel_pose_skeleton[:, child].clone()
template = rel_rest_pose[:, child].clone()
target = torch.matmul(rot_mat_chain_parent.transpose(1, 2), target)
target_mat.append(target)
rest_mat.append(template)
rest_mat = torch.cat(rest_mat, dim=2)
target_mat = torch.cat(target_mat, dim=2)
S = rest_mat.bmm(target_mat.transpose(1, 2))
U, _, V = torch.svd(S)
rot_mat = torch.bmm(V, U.transpose(1, 2))
assert torch.sum(torch.isnan(rot_mat)) == 0, ('3children rot_mat', rot_mat)
return rot_mat
|