Spaces:
Sleeping
Sleeping
File size: 28,839 Bytes
d7e58f0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 |
from typing import List
import torch
import torch.nn.functional as F
from smplx.utils import find_joint_kin_chain
from detrsmpl.core.conventions.keypoints_mapping import (
get_keypoint_idx,
get_keypoint_idxs_by_part,
)
from detrsmpl.utils.geometry import weak_perspective_projection
class SMPLXHandMergeFunc():
"""This function use predictions from hand model to update the hand params
(right_hand_pose, left_hand_pose, wrist_pose) in predictions from body
model."""
def __init__(self, body_model, convention='smplx'):
self.body_model = body_model
self.convention = convention
self.left_hand_idxs = get_keypoint_idxs_by_part(
'left_hand', self.convention)
self.left_wrist_idx = get_keypoint_idx('left_wrist', self.convention)
self.left_hand_idxs.append(self.left_wrist_idx)
self.left_wrist_kin_chain = find_joint_kin_chain(
self.left_wrist_idx, self.body_model.parents)
self.right_hand_idxs = get_keypoint_idxs_by_part(
'right_hand', self.convention)
self.right_wrist_idx = get_keypoint_idx('right_wrist', self.convention)
self.right_hand_idxs.append(self.right_wrist_idx)
self.right_wrist_kin_chain = find_joint_kin_chain(
self.right_wrist_idx, self.body_model.parents)
def __call__(self, body_predictions, hand_predictions):
"""Function
Args:
body_predictions (dict): The prediction from body model.
hand_predictions (dict): The prediction from hand model.
Returns:
dict: Merged prediction.
"""
pred_param = body_predictions['pred_param']
global_orient = pred_param['global_orient']
body_pose = pred_param['body_pose']
pred_cam = body_predictions['pred_cam']
batch_size = pred_cam.shape[0]
device = pred_cam.device
hands_from_body_idxs = torch.arange(0,
2 * batch_size,
dtype=torch.long,
device=device)
right_hand_from_body_idxs = hands_from_body_idxs[:batch_size]
left_hand_from_body_idxs = hands_from_body_idxs[batch_size:]
parent_rots = []
right_wrist_parent_rot = find_joint_global_rotation(
self.right_wrist_kin_chain[1:], global_orient, body_pose)
left_wrist_parent_rot = find_joint_global_rotation(
self.left_wrist_kin_chain[1:], global_orient, body_pose)
left_to_right_wrist_parent_rot = flip_rotmat(left_wrist_parent_rot)
parent_rots += [right_wrist_parent_rot, left_to_right_wrist_parent_rot]
parent_rots = torch.cat(parent_rots, dim=0)
wrist_pose_from_hand = hand_predictions['pred_param']['global_orient']
# Undo the rotation of the parent joints to make the wrist rotation
# relative again
wrist_pose_from_hand = torch.matmul(
parent_rots.reshape(-1, 3, 3).transpose(1, 2),
wrist_pose_from_hand.reshape(-1, 3, 3))
right_hand_wrist = wrist_pose_from_hand[right_hand_from_body_idxs]
left_hand_wrist = flip_rotmat(
wrist_pose_from_hand[left_hand_from_body_idxs])
right_hand_pose = hand_predictions['pred_param']['right_hand_pose'][
right_hand_from_body_idxs]
left_hand_pose = flip_rotmat(
hand_predictions['pred_param']['right_hand_pose']
[left_hand_from_body_idxs])
body_predictions['pred_param']['right_hand_pose'] = right_hand_pose
body_predictions['pred_param']['left_hand_pose'] = left_hand_pose
body_predictions['pred_param']['body_pose'][:, self.right_wrist_idx -
1] = right_hand_wrist
body_predictions['pred_param']['body_pose'][:, self.left_wrist_idx -
1] = left_hand_wrist
return body_predictions
class SMPLXFaceMergeFunc():
"""This function use predictions from face model to update the face params
(jaw_pose, expression) in predictions from body model."""
def __init__(self,
body_model,
convention='smplx',
num_expression_coeffs=10):
self.body_model = body_model
self.convention = convention
self.num_expression_coeffs = num_expression_coeffs
def __call__(self, body_predictions, face_predictions):
"""Function
Args:
body_predictions (dict): The prediction from body model.
face_predictions (dict): The prediction from face model.
Returns:
dict: Merged prediction.
"""
body_predictions['pred_param']['jaw_pose'] = face_predictions[
'pred_param']['jaw_pose']
body_predictions['pred_param']['expression'] = face_predictions[
'pred_param']['expression'][:, :self.num_expression_coeffs]
return body_predictions
def points_to_bbox(points, bbox_scale_factor: float = 1.0):
"""Get scaled bounding box from keypoints 2D."""
min_coords, _ = torch.min(points, dim=1)
xmin, ymin = min_coords[:, 0], min_coords[:, 1]
max_coords, _ = torch.max(points, dim=1)
xmax, ymax = max_coords[:, 0], max_coords[:, 1]
center = torch.stack([xmax + xmin, ymax + ymin], dim=-1) * 0.5
width = (xmax - xmin)
height = (ymax - ymin)
# Convert the bounding box to a square box
size = torch.max(width, height) * bbox_scale_factor
return center, size
def get_crop_info(points,
img_metas,
scale_factor: float = 1.0,
crop_size: int = 256):
"""Get the transformation of points on the cropped image to the points on
the original image."""
device = points.device
dtype = points.dtype
batch_size = points.shape[0]
# Get the image to crop transformations and bounding box sizes
crop_transforms = []
img_bbox_sizes = []
for img_meta in img_metas:
crop_transforms.append(img_meta['crop_transform'])
img_bbox_sizes.append(img_meta['scale'].max())
img_bbox_sizes = torch.tensor(img_bbox_sizes, dtype=dtype, device=device)
crop_transforms = torch.tensor(crop_transforms, dtype=dtype, device=device)
crop_transforms = torch.cat([
crop_transforms,
torch.tensor([0.0, 0.0, 1.0], dtype=dtype, device=device).expand(
[batch_size, 1, 3])
],
dim=1)
inv_crop_transforms = torch.inverse(crop_transforms)
# center on the cropped body image
center_body_crop, bbox_size = points_to_bbox(
points, bbox_scale_factor=scale_factor)
orig_bbox_size = bbox_size / crop_size * img_bbox_sizes
# Compute the center of the crop in the original image
center = (torch.einsum(
'bij,bj->bi', [inv_crop_transforms[:, :2, :2], center_body_crop]) +
inv_crop_transforms[:, :2, 2])
return {
'center': center.reshape(-1, 2),
'orig_bbox_size': orig_bbox_size,
# 'bbox_size': bbox_size.reshape(-1),
'inv_crop_transforms': inv_crop_transforms,
# 'center_body_crop': 2 * center_body_crop / (crop_size-1) - 1,
}
def concat_images(images: List[torch.Tensor]):
"""Concat images of different size."""
sizes = [img.shape[1:] for img in images]
H, W = [max(s) for s in zip(*sizes)]
batch_size = len(images)
batched_shape = (batch_size, images[0].shape[0], H, W)
batched = torch.zeros(batched_shape,
device=images[0].device,
dtype=images[0].dtype)
for ii, img in enumerate(images):
shape = img.shape
batched[ii, :shape[0], :shape[1], :shape[2]] = img
return batched
def flip_rotmat(pose_rotmat):
"""Flip function.
Flip rotmat.
"""
rot_mats = pose_rotmat.reshape(-1, 9).clone()
rot_mats[:, [1, 2, 3, 6]] *= -1
return rot_mats.view_as(pose_rotmat)
def find_joint_global_rotation(kin_chain, root_pose, body_pose):
"""Computes the absolute rotation of a joint from the kinematic chain."""
# Create a single vector with all the poses
parents_pose = torch.cat([root_pose, body_pose], dim=1)[:, kin_chain]
output_pose = parents_pose[:, 0]
for idx in range(1, parents_pose.shape[1]):
output_pose = torch.bmm(parents_pose[:, idx], output_pose)
return output_pose
class CropSampler():
"""This function crops the HD images using bilinear interpolation."""
def __init__(self, crop_size: int = 256) -> None:
"""Uses bilinear sampling to extract square crops.
This module expects a high resolution image as input and a bounding
box, described by its' center and size. It then proceeds to extract
a sub-image using the provided information through bilinear
interpolation.
Parameters
----------
crop_size: int
The desired size for the crop.
"""
super(CropSampler, self).__init__()
self.crop_size = crop_size
x = torch.arange(0, crop_size, dtype=torch.float32) / (crop_size - 1)
grid_y, grid_x = torch.meshgrid(x, x)
points = torch.stack([grid_y.flatten(), grid_x.flatten()], axis=1)
self.grid = points.unsqueeze(dim=0)
def _sample_padded(self, full_imgs, sampling_grid):
""""""
# Get the sub-images using bilinear interpolation
return F.grid_sample(full_imgs, sampling_grid, align_corners=True)
def __call__(self, full_imgs, center, bbox_size):
"""Crops the HD images using the provided bounding boxes.
Parameters
----------
full_imgs: ImageList
An image list structure with the full resolution images
center: torch.Tensor
A Bx2 tensor that contains the coordinates of the center of
the bounding box that will be cropped from the original
image
bbox_size: torch.Tensor
A size B tensor that contains the size of the corp
Returns
-------
cropped_images: torch.Tensoror
The images cropped from the high resolution input
sampling_grid: torch.Tensor
The grid used to sample the crops
"""
batch_size, _, H, W = full_imgs.shape
self.grid = self.grid.to(device=full_imgs.device)
transforms = torch.eye(3,
dtype=full_imgs.dtype,
device=full_imgs.device).reshape(
1, 3, 3).expand(batch_size, -1,
-1).contiguous()
hd_to_crop = torch.eye(3,
dtype=full_imgs.dtype,
device=full_imgs.device).reshape(
1, 3, 3).expand(batch_size, -1,
-1).contiguous()
# Create the transformation that maps crop pixels to image coordinates,
# i.e. pixel (0, 0) from the crop_size x crop_size grid gets mapped to
# the top left of the bounding box, pixel
# (crop_size - 1, crop_size - 1) to the bottom right corner of the
# bounding box
transforms[:, 0, 0] = bbox_size # / (self.crop_size - 1)
transforms[:, 1, 1] = bbox_size # / (self.crop_size - 1)
transforms[:, 0, 2] = center[:, 0] - bbox_size * 0.5
transforms[:, 1, 2] = center[:, 1] - bbox_size * 0.5
hd_to_crop[:, 0, 0] = 2 * (self.crop_size - 1) / bbox_size
hd_to_crop[:, 1, 1] = 2 * (self.crop_size - 1) / bbox_size
hd_to_crop[:, 0,
2] = -(center[:, 0] - bbox_size * 0.5) * hd_to_crop[:, 0,
0] - 1
hd_to_crop[:, 1,
2] = -(center[:, 1] - bbox_size * 0.5) * hd_to_crop[:, 1,
1] - 1
size_bbox_sizer = torch.eye(3,
dtype=full_imgs.dtype,
device=full_imgs.device).reshape(
1, 3, 3).expand(batch_size, -1,
-1).contiguous()
# Normalize the coordinates to [-1, 1] for the grid_sample function
size_bbox_sizer[:, 0, 0] = 2.0 / (W - 1)
size_bbox_sizer[:, 1, 1] = 2.0 / (H - 1)
size_bbox_sizer[:, :2, 2] = -1
# full_transform = transforms
full_transform = torch.bmm(size_bbox_sizer, transforms)
batch_grid = self.grid.expand(batch_size, -1, -1)
# Convert the grid to image coordinates using the transformations above
sampling_grid = (
torch.bmm(full_transform[:, :2, :2], batch_grid.transpose(1, 2)) +
full_transform[:, :2, [2]]).transpose(1, 2)
sampling_grid = sampling_grid.reshape(-1, self.crop_size,
self.crop_size,
2).transpose(1, 2)
out_images = self._sample_padded(full_imgs, sampling_grid)
return {
'images': out_images,
'sampling_grid': sampling_grid.reshape(batch_size, -1, 2),
'transform': transforms,
'hd_to_crop': hd_to_crop,
}
class SMPLXHandCropFunc():
"""This function crop hand image from the original image.
Use the output keypoints predicted by the body model to locate the hand
position.
"""
def __init__(self,
model_head,
body_model,
convention='smplx',
img_res=256,
scale_factor=2.0,
crop_size=224,
condition_hand_wrist_pose=True,
condition_hand_shape=False,
condition_hand_finger_pose=True):
self.model_head = model_head
self.body_model = body_model
self.img_res = img_res
self.convention = convention
self.left_hand_idxs = get_keypoint_idxs_by_part(
'left_hand', self.convention)
left_wrist_idx = get_keypoint_idx('left_wrist', self.convention)
self.left_hand_idxs.append(left_wrist_idx)
self.left_wrist_kin_chain = find_joint_kin_chain(
left_wrist_idx, self.body_model.parents)
self.right_hand_idxs = get_keypoint_idxs_by_part(
'right_hand', self.convention)
right_wrist_idx = get_keypoint_idx('right_wrist', self.convention)
self.right_hand_idxs.append(right_wrist_idx)
self.right_wrist_kin_chain = find_joint_kin_chain(
right_wrist_idx, self.body_model.parents)
self.scale_factor = scale_factor
self.hand_cropper = CropSampler(crop_size)
self.condition_hand_wrist_pose = condition_hand_wrist_pose
self.condition_hand_shape = condition_hand_shape
self.condition_hand_finger_pose = condition_hand_finger_pose
def build_hand_mean(self, global_orient, body_pose, betas, left_hand_pose,
raw_right_hand_pose, batch_size):
"""Builds the initial point for the iterative regressor of the hand."""
hand_mean = []
# if self.condition_hand_on_body:
# Convert the absolute pose to the latent representation
if self.condition_hand_wrist_pose:
# Compute the absolute pose of the right wrist
right_wrist_pose_abs = find_joint_global_rotation(
self.right_wrist_kin_chain, global_orient, body_pose)
right_wrist_pose = right_wrist_pose_abs[:, :3, :2].contiguous(
).reshape(batch_size, -1)
# Compute the absolute rotation for the left wrist
left_wrist_pose_abs = find_joint_global_rotation(
self.left_wrist_kin_chain, global_orient, body_pose)
# Flip the left wrist to the right
left_to_right_wrist_pose = flip_rotmat(left_wrist_pose_abs)
# Convert to the latent representation
left_to_right_wrist_pose = left_to_right_wrist_pose[:, :3, :
2].contiguous(
).reshape(
batch_size,
-1)
else:
right_wrist_pose = self.model_head.get_mean('global_orient',
batch_size=batch_size)
left_to_right_wrist_pose = self.model_head.get_mean(
'global_orient', batch_size=batch_size)
# Convert the pose of the left hand to the right hand and project
# it to the encoder space
left_to_right_hand_pose = flip_rotmat(
left_hand_pose)[:, :, :3, :2].contiguous().reshape(batch_size, -1)
right_hand_pose = raw_right_hand_pose.reshape(batch_size, -1)
camera_mean = self.model_head.get_mean('camera', batch_size=batch_size)
shape_condition = (betas if self.condition_hand_shape else
self.model_head.get_mean('shape',
batch_size=batch_size))
right_finger_pose_condition = (
right_hand_pose if self.condition_hand_finger_pose else
self.model_head.get_mean('right_hand_pose', batch_size=batch_size))
right_hand_mean = torch.cat([
right_wrist_pose, right_finger_pose_condition, shape_condition,
camera_mean
],
dim=1)
left_finger_pose_condition = (
left_to_right_hand_pose if self.condition_hand_finger_pose else
self.model_head.get_mean('right_hand_pose', batch_size=batch_size))
# Should be Bx31
left_hand_mean = torch.cat([
left_to_right_wrist_pose, left_finger_pose_condition,
shape_condition, camera_mean
],
dim=1)
hand_mean += [right_hand_mean, left_hand_mean]
hand_mean = torch.cat(hand_mean, dim=0)
return hand_mean
def __call__(self, body_predictions, img_metas):
"""Function
Args:
body_predictions (dict): The prediction from body model.
img_metas (dict): Information of the input images.
Returns:
all_hand_imgs (torch.tensor): Cropped hand images.
hand_mean (torch.tensor): Mean value of hand params.
crop_info (dict): Hand crop transforms.
"""
pred_param = body_predictions['pred_param']
pred_cam = body_predictions['pred_cam']
pred_raw = body_predictions['pred_raw']
pred_output = self.body_model(**pred_param)
pred_keypoints3d = pred_output['joints']
pred_keypoints2d = weak_perspective_projection(
pred_keypoints3d,
scale=pred_cam[:, 0],
translation=pred_cam[:, 1:3])
# concat ori_img
full_images = []
for img_meta in img_metas:
full_images.append(img_meta['ori_img'].to(device=pred_cam.device))
full_imgs = concat_images(full_images)
# left hand
left_hand_joints = (pred_keypoints2d[:, self.left_hand_idxs] * 0.5 +
0.5) * (self.img_res - 1)
left_hand_points_to_crop = get_crop_info(left_hand_joints, img_metas,
self.scale_factor,
self.img_res)
left_hand_center = left_hand_points_to_crop['center']
left_hand_orig_bbox_size = left_hand_points_to_crop['orig_bbox_size']
left_hand_inv_crop_transforms = left_hand_points_to_crop[
'inv_crop_transforms']
left_hand_cropper_out = self.hand_cropper(full_imgs, left_hand_center,
left_hand_orig_bbox_size)
left_hand_crops = left_hand_cropper_out['images']
# left_hand_points = left_hand_cropper_out['sampling_grid']
left_hand_crop_transform = left_hand_cropper_out['transform']
# right hand
right_hand_joints = (pred_keypoints2d[:, self.right_hand_idxs] * 0.5 +
0.5) * (self.img_res - 1)
right_hand_points_to_crop = get_crop_info(right_hand_joints, img_metas,
self.scale_factor,
self.img_res)
right_hand_center = right_hand_points_to_crop['center']
right_hand_orig_bbox_size = right_hand_points_to_crop['orig_bbox_size']
# right_hand_inv_crop_transforms = right_hand_points_to_crop[
# 'inv_crop_transforms']
right_hand_cropper_out = self.hand_cropper(full_imgs,
right_hand_center,
right_hand_orig_bbox_size)
right_hand_crops = right_hand_cropper_out['images']
# right_hand_points = right_hand_cropper_out['sampling_grid']
right_hand_crop_transform = right_hand_cropper_out['transform']
# concat
all_hand_imgs = []
all_hand_imgs.append(right_hand_crops)
all_hand_imgs.append(torch.flip(left_hand_crops, dims=(-1, )))
# [right_hand , left hand]
all_hand_imgs = torch.cat(all_hand_imgs, dim=0)
hand_mean = self.build_hand_mean(pred_param['global_orient'],
pred_param['body_pose'],
pred_param['betas'],
pred_param['left_hand_pose'],
pred_raw['raw_right_hand_pose'],
batch_size=full_imgs.shape[0])
crop_info = dict(
hand_inv_crop_transforms=left_hand_inv_crop_transforms,
left_hand_crop_transform=left_hand_crop_transform,
right_hand_crop_transform=right_hand_crop_transform)
return all_hand_imgs, hand_mean, crop_info
class SMPLXFaceCropFunc():
"""This function crop face image from the original image.
Use the output keypoints predicted by the facce model to locate the face
position.
"""
def __init__(self,
model_head,
body_model,
convention='smplx',
img_res=256,
scale_factor=2.0,
crop_size=256,
num_betas=10,
num_expression_coeffs=10,
condition_face_neck_pose=False,
condition_face_jaw_pose=True,
condition_face_shape=False,
condition_face_expression=True):
self.model_head = model_head
self.body_model = body_model
self.img_res = img_res
self.convention = convention
self.num_betas = num_betas
self.num_expression_coeffs = num_expression_coeffs
self.face_idx = get_keypoint_idxs_by_part('head', self.convention)
neck_idx = get_keypoint_idx('neck', self.convention)
self.neck_kin_chain = find_joint_kin_chain(neck_idx,
self.body_model.parents)
self.condition_face_neck_pose = condition_face_neck_pose
self.condition_face_jaw_pose = condition_face_jaw_pose
self.condition_face_shape = condition_face_shape
self.condition_face_expression = condition_face_expression
self.scale_factor = scale_factor
self.face_cropper = CropSampler(crop_size)
def build_face_mean(self, global_orient, body_pose, betas, raw_jaw_pose,
expression, batch_size):
"""Builds the initial point for the iterative regressor of the face."""
face_mean = []
# Compute the absolute pose of the right wrist
neck_pose_abs = find_joint_global_rotation(self.neck_kin_chain,
global_orient, body_pose)
# Convert the absolute neck pose to offsets
neck_pose = neck_pose_abs[:, :3, :2].contiguous().reshape(
batch_size, -1)
camera_mean = self.model_head.get_mean('camera', batch_size=batch_size)
neck_pose_condition = (neck_pose if self.condition_face_neck_pose else
self.model_head.get_mean('global_orient',
batch_size=batch_size))
jaw_pose_condition = (raw_jaw_pose.reshape(batch_size, -1)
if self.condition_face_jaw_pose else
self.model_head.get_mean('jaw_pose',
batch_size=batch_size))
face_num_betas = self.model_head.get_num_betas()
shape_padding_size = face_num_betas - self.num_betas
betas_condition = (
F.pad(betas.reshape(batch_size, -1),
(0, shape_padding_size)) if self.condition_face_shape else
self.model_head.get_mean('shape', batch_size=batch_size))
face_num_expression_coeffs = self.model_head.get_num_expression_coeffs(
)
expr_padding_size = face_num_expression_coeffs \
- self.num_expression_coeffs
expression_condition = (
F.pad(expression.reshape(batch_size, -1),
(0, expr_padding_size)) if self.condition_face_expression
else self.model_head.get_mean('expression', batch_size=batch_size))
# Should be Bx(Head pose params)
face_mean.append(
torch.cat([
neck_pose_condition,
jaw_pose_condition,
betas_condition,
expression_condition,
camera_mean.reshape(batch_size, -1),
],
dim=1))
face_mean = torch.cat(face_mean, dim=0)
return face_mean
def __call__(self, body_predictions, img_metas):
"""Function
Args:
body_predictions (dict): The prediction from body model.
img_metas (dict): Information of the input images.
Returns:
all_face_imgs (torch.tensor): Cropped face images.
face_mean (torch.tensor): Mean value of face params.
crop_info (dict): Face crop transforms.
"""
pred_param = body_predictions['pred_param']
pred_cam = body_predictions['pred_cam']
pred_raw = body_predictions['pred_raw']
pred_output = self.body_model(**pred_param)
pred_keypoints3d = pred_output['joints']
pred_keypoints2d = weak_perspective_projection(
pred_keypoints3d,
scale=pred_cam[:, 0],
translation=pred_cam[:, 1:3])
# concat ori_img
full_images = []
for img_meta in img_metas:
full_images.append(img_meta['ori_img'].to(device=pred_cam.device))
full_imgs = concat_images(full_images)
face_joints = (pred_keypoints2d[:, self.face_idx] * 0.5 +
0.5) * (self.img_res - 1)
face_points_to_crop = get_crop_info(face_joints, img_metas,
self.scale_factor, self.img_res)
face_center = face_points_to_crop['center']
face_orig_bbox_size = face_points_to_crop['orig_bbox_size']
face_inv_crop_transforms = face_points_to_crop['inv_crop_transforms']
face_cropper_out = self.face_cropper(full_imgs, face_center,
face_orig_bbox_size)
face_crops = face_cropper_out['images']
# face_points = face_cropper_out['sampling_grid']
face_crop_transform = face_cropper_out['transform']
all_face_imgs = [face_crops]
all_face_imgs = torch.cat(all_face_imgs, dim=0)
face_mean = self.build_face_mean(pred_param['global_orient'],
pred_param['body_pose'],
pred_param['betas'],
pred_raw['raw_jaw_pose'],
pred_param['expression'],
batch_size=full_imgs.shape[0])
crop_info = dict(face_inv_crop_transforms=face_inv_crop_transforms,
face_crop_transform=face_crop_transform)
return all_face_imgs, face_mean, crop_info
|