File size: 28,839 Bytes
d7e58f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
from typing import List

import torch
import torch.nn.functional as F
from smplx.utils import find_joint_kin_chain

from detrsmpl.core.conventions.keypoints_mapping import (
    get_keypoint_idx,
    get_keypoint_idxs_by_part,
)
from detrsmpl.utils.geometry import weak_perspective_projection


class SMPLXHandMergeFunc():
    """This function use predictions from hand model to update the hand params
    (right_hand_pose, left_hand_pose, wrist_pose) in predictions from body
    model."""
    def __init__(self, body_model, convention='smplx'):
        self.body_model = body_model
        self.convention = convention
        self.left_hand_idxs = get_keypoint_idxs_by_part(
            'left_hand', self.convention)
        self.left_wrist_idx = get_keypoint_idx('left_wrist', self.convention)
        self.left_hand_idxs.append(self.left_wrist_idx)
        self.left_wrist_kin_chain = find_joint_kin_chain(
            self.left_wrist_idx, self.body_model.parents)

        self.right_hand_idxs = get_keypoint_idxs_by_part(
            'right_hand', self.convention)
        self.right_wrist_idx = get_keypoint_idx('right_wrist', self.convention)
        self.right_hand_idxs.append(self.right_wrist_idx)
        self.right_wrist_kin_chain = find_joint_kin_chain(
            self.right_wrist_idx, self.body_model.parents)

    def __call__(self, body_predictions, hand_predictions):
        """Function
        Args:
            body_predictions (dict): The prediction from body model.
            hand_predictions (dict): The prediction from hand model.
        Returns:
            dict: Merged prediction.
        """
        pred_param = body_predictions['pred_param']
        global_orient = pred_param['global_orient']
        body_pose = pred_param['body_pose']
        pred_cam = body_predictions['pred_cam']
        batch_size = pred_cam.shape[0]
        device = pred_cam.device
        hands_from_body_idxs = torch.arange(0,
                                            2 * batch_size,
                                            dtype=torch.long,
                                            device=device)
        right_hand_from_body_idxs = hands_from_body_idxs[:batch_size]
        left_hand_from_body_idxs = hands_from_body_idxs[batch_size:]

        parent_rots = []
        right_wrist_parent_rot = find_joint_global_rotation(
            self.right_wrist_kin_chain[1:], global_orient, body_pose)

        left_wrist_parent_rot = find_joint_global_rotation(
            self.left_wrist_kin_chain[1:], global_orient, body_pose)
        left_to_right_wrist_parent_rot = flip_rotmat(left_wrist_parent_rot)

        parent_rots += [right_wrist_parent_rot, left_to_right_wrist_parent_rot]
        parent_rots = torch.cat(parent_rots, dim=0)

        wrist_pose_from_hand = hand_predictions['pred_param']['global_orient']
        # Undo the rotation of the parent joints to make the wrist rotation
        # relative again
        wrist_pose_from_hand = torch.matmul(
            parent_rots.reshape(-1, 3, 3).transpose(1, 2),
            wrist_pose_from_hand.reshape(-1, 3, 3))

        right_hand_wrist = wrist_pose_from_hand[right_hand_from_body_idxs]
        left_hand_wrist = flip_rotmat(
            wrist_pose_from_hand[left_hand_from_body_idxs])
        right_hand_pose = hand_predictions['pred_param']['right_hand_pose'][
            right_hand_from_body_idxs]
        left_hand_pose = flip_rotmat(
            hand_predictions['pred_param']['right_hand_pose']
            [left_hand_from_body_idxs])

        body_predictions['pred_param']['right_hand_pose'] = right_hand_pose
        body_predictions['pred_param']['left_hand_pose'] = left_hand_pose
        body_predictions['pred_param']['body_pose'][:, self.right_wrist_idx -
                                                    1] = right_hand_wrist
        body_predictions['pred_param']['body_pose'][:, self.left_wrist_idx -
                                                    1] = left_hand_wrist

        return body_predictions


class SMPLXFaceMergeFunc():
    """This function use predictions from face model to update the face params
    (jaw_pose, expression) in predictions from body model."""
    def __init__(self,
                 body_model,
                 convention='smplx',
                 num_expression_coeffs=10):
        self.body_model = body_model
        self.convention = convention
        self.num_expression_coeffs = num_expression_coeffs

    def __call__(self, body_predictions, face_predictions):
        """Function
        Args:
            body_predictions (dict): The prediction from body model.
            face_predictions (dict): The prediction from face model.
        Returns:
            dict: Merged prediction.
        """
        body_predictions['pred_param']['jaw_pose'] = face_predictions[
            'pred_param']['jaw_pose']
        body_predictions['pred_param']['expression'] = face_predictions[
            'pred_param']['expression'][:, :self.num_expression_coeffs]
        return body_predictions


def points_to_bbox(points, bbox_scale_factor: float = 1.0):
    """Get scaled bounding box from keypoints 2D."""
    min_coords, _ = torch.min(points, dim=1)
    xmin, ymin = min_coords[:, 0], min_coords[:, 1]
    max_coords, _ = torch.max(points, dim=1)
    xmax, ymax = max_coords[:, 0], max_coords[:, 1]

    center = torch.stack([xmax + xmin, ymax + ymin], dim=-1) * 0.5

    width = (xmax - xmin)
    height = (ymax - ymin)

    # Convert the bounding box to a square box
    size = torch.max(width, height) * bbox_scale_factor

    return center, size


def get_crop_info(points,
                  img_metas,
                  scale_factor: float = 1.0,
                  crop_size: int = 256):
    """Get the transformation of points on the cropped image to the points on
    the original image."""
    device = points.device
    dtype = points.dtype
    batch_size = points.shape[0]
    # Get the image to crop transformations and bounding box sizes
    crop_transforms = []
    img_bbox_sizes = []
    for img_meta in img_metas:
        crop_transforms.append(img_meta['crop_transform'])
        img_bbox_sizes.append(img_meta['scale'].max())

    img_bbox_sizes = torch.tensor(img_bbox_sizes, dtype=dtype, device=device)

    crop_transforms = torch.tensor(crop_transforms, dtype=dtype, device=device)

    crop_transforms = torch.cat([
        crop_transforms,
        torch.tensor([0.0, 0.0, 1.0], dtype=dtype, device=device).expand(
            [batch_size, 1, 3])
    ],
                                dim=1)

    inv_crop_transforms = torch.inverse(crop_transforms)

    # center on the cropped body image
    center_body_crop, bbox_size = points_to_bbox(
        points, bbox_scale_factor=scale_factor)

    orig_bbox_size = bbox_size / crop_size * img_bbox_sizes

    # Compute the center of the crop in the original image
    center = (torch.einsum(
        'bij,bj->bi', [inv_crop_transforms[:, :2, :2], center_body_crop]) +
              inv_crop_transforms[:, :2, 2])

    return {
        'center': center.reshape(-1, 2),
        'orig_bbox_size': orig_bbox_size,
        # 'bbox_size': bbox_size.reshape(-1),
        'inv_crop_transforms': inv_crop_transforms,
        # 'center_body_crop': 2 * center_body_crop / (crop_size-1) - 1,
    }


def concat_images(images: List[torch.Tensor]):
    """Concat images of different size."""
    sizes = [img.shape[1:] for img in images]
    H, W = [max(s) for s in zip(*sizes)]
    batch_size = len(images)
    batched_shape = (batch_size, images[0].shape[0], H, W)
    batched = torch.zeros(batched_shape,
                          device=images[0].device,
                          dtype=images[0].dtype)
    for ii, img in enumerate(images):
        shape = img.shape
        batched[ii, :shape[0], :shape[1], :shape[2]] = img
    return batched


def flip_rotmat(pose_rotmat):
    """Flip function.

    Flip rotmat.
    """
    rot_mats = pose_rotmat.reshape(-1, 9).clone()

    rot_mats[:, [1, 2, 3, 6]] *= -1
    return rot_mats.view_as(pose_rotmat)


def find_joint_global_rotation(kin_chain, root_pose, body_pose):
    """Computes the absolute rotation of a joint from the kinematic chain."""
    # Create a single vector with all the poses
    parents_pose = torch.cat([root_pose, body_pose], dim=1)[:, kin_chain]
    output_pose = parents_pose[:, 0]
    for idx in range(1, parents_pose.shape[1]):
        output_pose = torch.bmm(parents_pose[:, idx], output_pose)
    return output_pose


class CropSampler():
    """This function crops the HD images using bilinear interpolation."""
    def __init__(self, crop_size: int = 256) -> None:
        """Uses bilinear sampling to extract square crops.

        This module expects a high resolution image as input and a bounding
        box, described by its' center and size. It then proceeds to extract
        a sub-image using the provided information through bilinear
        interpolation.

        Parameters
        ----------
            crop_size: int
                The desired size for the crop.
        """
        super(CropSampler, self).__init__()

        self.crop_size = crop_size
        x = torch.arange(0, crop_size, dtype=torch.float32) / (crop_size - 1)
        grid_y, grid_x = torch.meshgrid(x, x)

        points = torch.stack([grid_y.flatten(), grid_x.flatten()], axis=1)

        self.grid = points.unsqueeze(dim=0)

    def _sample_padded(self, full_imgs, sampling_grid):
        """"""
        # Get the sub-images using bilinear interpolation
        return F.grid_sample(full_imgs, sampling_grid, align_corners=True)

    def __call__(self, full_imgs, center, bbox_size):
        """Crops the HD images using the provided bounding boxes.

        Parameters
        ----------
            full_imgs: ImageList
                An image list structure with the full resolution images
            center: torch.Tensor
                A Bx2 tensor that contains the coordinates of the center of
                the bounding box that will be cropped from the original
                image
            bbox_size: torch.Tensor
                A size B tensor that contains the size of the corp

        Returns
        -------
            cropped_images: torch.Tensoror
                The images cropped from the high resolution input
            sampling_grid: torch.Tensor
                The grid used to sample the crops
        """

        batch_size, _, H, W = full_imgs.shape
        self.grid = self.grid.to(device=full_imgs.device)
        transforms = torch.eye(3,
                               dtype=full_imgs.dtype,
                               device=full_imgs.device).reshape(
                                   1, 3, 3).expand(batch_size, -1,
                                                   -1).contiguous()

        hd_to_crop = torch.eye(3,
                               dtype=full_imgs.dtype,
                               device=full_imgs.device).reshape(
                                   1, 3, 3).expand(batch_size, -1,
                                                   -1).contiguous()

        # Create the transformation that maps crop pixels to image coordinates,
        # i.e. pixel (0, 0) from the crop_size x crop_size grid gets mapped to
        # the top left of the bounding box, pixel
        # (crop_size - 1, crop_size - 1) to the bottom right corner of the
        # bounding box
        transforms[:, 0, 0] = bbox_size  # / (self.crop_size - 1)
        transforms[:, 1, 1] = bbox_size  # / (self.crop_size - 1)
        transforms[:, 0, 2] = center[:, 0] - bbox_size * 0.5
        transforms[:, 1, 2] = center[:, 1] - bbox_size * 0.5

        hd_to_crop[:, 0, 0] = 2 * (self.crop_size - 1) / bbox_size
        hd_to_crop[:, 1, 1] = 2 * (self.crop_size - 1) / bbox_size
        hd_to_crop[:, 0,
                   2] = -(center[:, 0] - bbox_size * 0.5) * hd_to_crop[:, 0,
                                                                       0] - 1
        hd_to_crop[:, 1,
                   2] = -(center[:, 1] - bbox_size * 0.5) * hd_to_crop[:, 1,
                                                                       1] - 1

        size_bbox_sizer = torch.eye(3,
                                    dtype=full_imgs.dtype,
                                    device=full_imgs.device).reshape(
                                        1, 3, 3).expand(batch_size, -1,
                                                        -1).contiguous()

        # Normalize the coordinates to [-1, 1] for the grid_sample function
        size_bbox_sizer[:, 0, 0] = 2.0 / (W - 1)
        size_bbox_sizer[:, 1, 1] = 2.0 / (H - 1)
        size_bbox_sizer[:, :2, 2] = -1

        #  full_transform = transforms
        full_transform = torch.bmm(size_bbox_sizer, transforms)

        batch_grid = self.grid.expand(batch_size, -1, -1)
        # Convert the grid to image coordinates using the transformations above
        sampling_grid = (
            torch.bmm(full_transform[:, :2, :2], batch_grid.transpose(1, 2)) +
            full_transform[:, :2, [2]]).transpose(1, 2)
        sampling_grid = sampling_grid.reshape(-1, self.crop_size,
                                              self.crop_size,
                                              2).transpose(1, 2)

        out_images = self._sample_padded(full_imgs, sampling_grid)

        return {
            'images': out_images,
            'sampling_grid': sampling_grid.reshape(batch_size, -1, 2),
            'transform': transforms,
            'hd_to_crop': hd_to_crop,
        }


class SMPLXHandCropFunc():
    """This function crop hand image from the original image.

    Use the output keypoints predicted by the body model to locate the hand
    position.
    """
    def __init__(self,
                 model_head,
                 body_model,
                 convention='smplx',
                 img_res=256,
                 scale_factor=2.0,
                 crop_size=224,
                 condition_hand_wrist_pose=True,
                 condition_hand_shape=False,
                 condition_hand_finger_pose=True):
        self.model_head = model_head
        self.body_model = body_model
        self.img_res = img_res
        self.convention = convention
        self.left_hand_idxs = get_keypoint_idxs_by_part(
            'left_hand', self.convention)
        left_wrist_idx = get_keypoint_idx('left_wrist', self.convention)
        self.left_hand_idxs.append(left_wrist_idx)
        self.left_wrist_kin_chain = find_joint_kin_chain(
            left_wrist_idx, self.body_model.parents)

        self.right_hand_idxs = get_keypoint_idxs_by_part(
            'right_hand', self.convention)
        right_wrist_idx = get_keypoint_idx('right_wrist', self.convention)
        self.right_hand_idxs.append(right_wrist_idx)
        self.right_wrist_kin_chain = find_joint_kin_chain(
            right_wrist_idx, self.body_model.parents)

        self.scale_factor = scale_factor
        self.hand_cropper = CropSampler(crop_size)

        self.condition_hand_wrist_pose = condition_hand_wrist_pose
        self.condition_hand_shape = condition_hand_shape
        self.condition_hand_finger_pose = condition_hand_finger_pose

    def build_hand_mean(self, global_orient, body_pose, betas, left_hand_pose,
                        raw_right_hand_pose, batch_size):
        """Builds the initial point for the iterative regressor of the hand."""
        hand_mean = []

        #  if self.condition_hand_on_body:
        # Convert the absolute pose to the latent representation
        if self.condition_hand_wrist_pose:
            # Compute the absolute pose of the right wrist
            right_wrist_pose_abs = find_joint_global_rotation(
                self.right_wrist_kin_chain, global_orient, body_pose)
            right_wrist_pose = right_wrist_pose_abs[:, :3, :2].contiguous(
            ).reshape(batch_size, -1)

            # Compute the absolute rotation for the left wrist
            left_wrist_pose_abs = find_joint_global_rotation(
                self.left_wrist_kin_chain, global_orient, body_pose)
            # Flip the left wrist to the right
            left_to_right_wrist_pose = flip_rotmat(left_wrist_pose_abs)

            # Convert to the latent representation
            left_to_right_wrist_pose = left_to_right_wrist_pose[:, :3, :
                                                                2].contiguous(
                                                                ).reshape(
                                                                    batch_size,
                                                                    -1)
        else:
            right_wrist_pose = self.model_head.get_mean('global_orient',
                                                        batch_size=batch_size)
            left_to_right_wrist_pose = self.model_head.get_mean(
                'global_orient', batch_size=batch_size)

        # Convert the pose of the left hand to the right hand and project
        # it to the encoder space
        left_to_right_hand_pose = flip_rotmat(
            left_hand_pose)[:, :, :3, :2].contiguous().reshape(batch_size, -1)
        right_hand_pose = raw_right_hand_pose.reshape(batch_size, -1)
        camera_mean = self.model_head.get_mean('camera', batch_size=batch_size)

        shape_condition = (betas if self.condition_hand_shape else
                           self.model_head.get_mean('shape',
                                                    batch_size=batch_size))
        right_finger_pose_condition = (
            right_hand_pose if self.condition_hand_finger_pose else
            self.model_head.get_mean('right_hand_pose', batch_size=batch_size))
        right_hand_mean = torch.cat([
            right_wrist_pose, right_finger_pose_condition, shape_condition,
            camera_mean
        ],
                                    dim=1)

        left_finger_pose_condition = (
            left_to_right_hand_pose if self.condition_hand_finger_pose else
            self.model_head.get_mean('right_hand_pose', batch_size=batch_size))
        # Should be Bx31
        left_hand_mean = torch.cat([
            left_to_right_wrist_pose, left_finger_pose_condition,
            shape_condition, camera_mean
        ],
                                   dim=1)

        hand_mean += [right_hand_mean, left_hand_mean]
        hand_mean = torch.cat(hand_mean, dim=0)

        return hand_mean

    def __call__(self, body_predictions, img_metas):
        """Function
        Args:
            body_predictions (dict): The prediction from body model.
            img_metas (dict): Information of the input images.
        Returns:
            all_hand_imgs (torch.tensor): Cropped hand images.
            hand_mean (torch.tensor): Mean value of hand params.
            crop_info (dict): Hand crop transforms.
        """
        pred_param = body_predictions['pred_param']
        pred_cam = body_predictions['pred_cam']
        pred_raw = body_predictions['pred_raw']
        pred_output = self.body_model(**pred_param)

        pred_keypoints3d = pred_output['joints']
        pred_keypoints2d = weak_perspective_projection(
            pred_keypoints3d,
            scale=pred_cam[:, 0],
            translation=pred_cam[:, 1:3])
        # concat ori_img
        full_images = []
        for img_meta in img_metas:
            full_images.append(img_meta['ori_img'].to(device=pred_cam.device))
        full_imgs = concat_images(full_images)

        # left hand
        left_hand_joints = (pred_keypoints2d[:, self.left_hand_idxs] * 0.5 +
                            0.5) * (self.img_res - 1)
        left_hand_points_to_crop = get_crop_info(left_hand_joints, img_metas,
                                                 self.scale_factor,
                                                 self.img_res)
        left_hand_center = left_hand_points_to_crop['center']
        left_hand_orig_bbox_size = left_hand_points_to_crop['orig_bbox_size']
        left_hand_inv_crop_transforms = left_hand_points_to_crop[
            'inv_crop_transforms']

        left_hand_cropper_out = self.hand_cropper(full_imgs, left_hand_center,
                                                  left_hand_orig_bbox_size)
        left_hand_crops = left_hand_cropper_out['images']
        # left_hand_points = left_hand_cropper_out['sampling_grid']
        left_hand_crop_transform = left_hand_cropper_out['transform']

        # right hand
        right_hand_joints = (pred_keypoints2d[:, self.right_hand_idxs] * 0.5 +
                             0.5) * (self.img_res - 1)
        right_hand_points_to_crop = get_crop_info(right_hand_joints, img_metas,
                                                  self.scale_factor,
                                                  self.img_res)
        right_hand_center = right_hand_points_to_crop['center']
        right_hand_orig_bbox_size = right_hand_points_to_crop['orig_bbox_size']
        # right_hand_inv_crop_transforms = right_hand_points_to_crop[
        #     'inv_crop_transforms']
        right_hand_cropper_out = self.hand_cropper(full_imgs,
                                                   right_hand_center,
                                                   right_hand_orig_bbox_size)
        right_hand_crops = right_hand_cropper_out['images']
        # right_hand_points = right_hand_cropper_out['sampling_grid']
        right_hand_crop_transform = right_hand_cropper_out['transform']

        # concat
        all_hand_imgs = []
        all_hand_imgs.append(right_hand_crops)
        all_hand_imgs.append(torch.flip(left_hand_crops, dims=(-1, )))

        # [right_hand , left hand]
        all_hand_imgs = torch.cat(all_hand_imgs, dim=0)
        hand_mean = self.build_hand_mean(pred_param['global_orient'],
                                         pred_param['body_pose'],
                                         pred_param['betas'],
                                         pred_param['left_hand_pose'],
                                         pred_raw['raw_right_hand_pose'],
                                         batch_size=full_imgs.shape[0])
        crop_info = dict(
            hand_inv_crop_transforms=left_hand_inv_crop_transforms,
            left_hand_crop_transform=left_hand_crop_transform,
            right_hand_crop_transform=right_hand_crop_transform)
        return all_hand_imgs, hand_mean, crop_info


class SMPLXFaceCropFunc():
    """This function crop face image from the original image.

    Use the output keypoints predicted by the facce model to locate the face
    position.
    """
    def __init__(self,
                 model_head,
                 body_model,
                 convention='smplx',
                 img_res=256,
                 scale_factor=2.0,
                 crop_size=256,
                 num_betas=10,
                 num_expression_coeffs=10,
                 condition_face_neck_pose=False,
                 condition_face_jaw_pose=True,
                 condition_face_shape=False,
                 condition_face_expression=True):
        self.model_head = model_head
        self.body_model = body_model
        self.img_res = img_res
        self.convention = convention
        self.num_betas = num_betas
        self.num_expression_coeffs = num_expression_coeffs

        self.face_idx = get_keypoint_idxs_by_part('head', self.convention)
        neck_idx = get_keypoint_idx('neck', self.convention)
        self.neck_kin_chain = find_joint_kin_chain(neck_idx,
                                                   self.body_model.parents)

        self.condition_face_neck_pose = condition_face_neck_pose
        self.condition_face_jaw_pose = condition_face_jaw_pose
        self.condition_face_shape = condition_face_shape
        self.condition_face_expression = condition_face_expression

        self.scale_factor = scale_factor
        self.face_cropper = CropSampler(crop_size)

    def build_face_mean(self, global_orient, body_pose, betas, raw_jaw_pose,
                        expression, batch_size):
        """Builds the initial point for the iterative regressor of the face."""
        face_mean = []
        # Compute the absolute pose of the right wrist
        neck_pose_abs = find_joint_global_rotation(self.neck_kin_chain,
                                                   global_orient, body_pose)
        # Convert the absolute neck pose to offsets
        neck_pose = neck_pose_abs[:, :3, :2].contiguous().reshape(
            batch_size, -1)

        camera_mean = self.model_head.get_mean('camera', batch_size=batch_size)

        neck_pose_condition = (neck_pose if self.condition_face_neck_pose else
                               self.model_head.get_mean('global_orient',
                                                        batch_size=batch_size))

        jaw_pose_condition = (raw_jaw_pose.reshape(batch_size, -1)
                              if self.condition_face_jaw_pose else
                              self.model_head.get_mean('jaw_pose',
                                                       batch_size=batch_size))
        face_num_betas = self.model_head.get_num_betas()
        shape_padding_size = face_num_betas - self.num_betas
        betas_condition = (
            F.pad(betas.reshape(batch_size, -1),
                  (0, shape_padding_size)) if self.condition_face_shape else
            self.model_head.get_mean('shape', batch_size=batch_size))

        face_num_expression_coeffs = self.model_head.get_num_expression_coeffs(
        )
        expr_padding_size = face_num_expression_coeffs \
            - self.num_expression_coeffs
        expression_condition = (
            F.pad(expression.reshape(batch_size, -1),
                  (0, expr_padding_size)) if self.condition_face_expression
            else self.model_head.get_mean('expression', batch_size=batch_size))

        # Should be Bx(Head pose params)
        face_mean.append(
            torch.cat([
                neck_pose_condition,
                jaw_pose_condition,
                betas_condition,
                expression_condition,
                camera_mean.reshape(batch_size, -1),
            ],
                      dim=1))

        face_mean = torch.cat(face_mean, dim=0)
        return face_mean

    def __call__(self, body_predictions, img_metas):
        """Function
        Args:
            body_predictions (dict): The prediction from body model.
            img_metas (dict): Information of the input images.
        Returns:
            all_face_imgs (torch.tensor): Cropped face images.
            face_mean (torch.tensor): Mean value of face params.
            crop_info (dict): Face crop transforms.
        """
        pred_param = body_predictions['pred_param']
        pred_cam = body_predictions['pred_cam']
        pred_raw = body_predictions['pred_raw']

        pred_output = self.body_model(**pred_param)

        pred_keypoints3d = pred_output['joints']
        pred_keypoints2d = weak_perspective_projection(
            pred_keypoints3d,
            scale=pred_cam[:, 0],
            translation=pred_cam[:, 1:3])
        # concat ori_img
        full_images = []
        for img_meta in img_metas:
            full_images.append(img_meta['ori_img'].to(device=pred_cam.device))
        full_imgs = concat_images(full_images)

        face_joints = (pred_keypoints2d[:, self.face_idx] * 0.5 +
                       0.5) * (self.img_res - 1)
        face_points_to_crop = get_crop_info(face_joints, img_metas,
                                            self.scale_factor, self.img_res)
        face_center = face_points_to_crop['center']
        face_orig_bbox_size = face_points_to_crop['orig_bbox_size']
        face_inv_crop_transforms = face_points_to_crop['inv_crop_transforms']

        face_cropper_out = self.face_cropper(full_imgs, face_center,
                                             face_orig_bbox_size)
        face_crops = face_cropper_out['images']
        # face_points = face_cropper_out['sampling_grid']
        face_crop_transform = face_cropper_out['transform']

        all_face_imgs = [face_crops]
        all_face_imgs = torch.cat(all_face_imgs, dim=0)

        face_mean = self.build_face_mean(pred_param['global_orient'],
                                         pred_param['body_pose'],
                                         pred_param['betas'],
                                         pred_raw['raw_jaw_pose'],
                                         pred_param['expression'],
                                         batch_size=full_imgs.shape[0])
        crop_info = dict(face_inv_crop_transforms=face_inv_crop_transforms,
                         face_crop_transform=face_crop_transform)
        return all_face_imgs, face_mean, crop_info