Spaces:
Sleeping
Sleeping
File size: 29,092 Bytes
d7e58f0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 |
import itertools
import os
import pickle
import sys
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from detrsmpl.core.conventions.joints_mapping.standard_joint_angles import (
STANDARD_JOINT_ANGLE_LIMITS,
TRANSFORMATION_AA_TO_SJA,
TRANSFORMATION_SJA_TO_AA,
)
from detrsmpl.utils.keypoint_utils import search_limbs
from detrsmpl.utils.transforms import aa_to_rot6d, aa_to_sja
class ShapePriorLoss(nn.Module):
"""Prior loss for body shape parameters.
Args:
reduction (str, optional): The method that reduces the loss to a
scalar. Options are "none", "mean" and "sum".
loss_weight (float, optional): The weight of the loss. Defaults to 1.0
"""
def __init__(self, reduction='mean', loss_weight=1.0):
super().__init__()
assert reduction in (None, 'none', 'mean', 'sum')
self.reduction = reduction
self.loss_weight = loss_weight
def forward(self,
betas,
loss_weight_override=None,
reduction_override=None):
"""Forward function of loss.
Args:
betas (torch.Tensor): The body shape parameters
loss_weight_override (float, optional): The weight of loss used to
override the original weight of loss
reduction_override (str, optional): The reduction method used to
override the original reduction method of the loss.
Defaults to None
Returns:
torch.Tensor: The calculated loss
"""
assert reduction_override in (None, 'none', 'mean', 'sum')
reduction = (reduction_override
if reduction_override else self.reduction)
loss_weight = (loss_weight_override if loss_weight_override is not None
else self.loss_weight)
shape_prior_loss = loss_weight * betas**2
if reduction == 'mean':
shape_prior_loss = shape_prior_loss.mean()
elif reduction == 'sum':
shape_prior_loss = shape_prior_loss.sum()
return shape_prior_loss
class ShapeThresholdPriorLoss(nn.Module):
"""Threshold loss for betas. Soft constraint to prevent parameters for
leaving feasible set. Implements a penalty constraint that encourages the
parameters to stay in the feasible set of solutions.
Args:
margin (int, optional): The threshold value
norm (str, optional): The loss method. Options are 'l1', l2'
loss_weight (float, optional): The weight of the loss. Defaults to 1.0
"""
def __init__(self, margin=1, norm='l2', epsilon=1e-7, loss_weight=1.0):
super().__init__()
self.margin = margin
assert norm in ['l1', 'l2'], 'Norm variable must me l1 or l2'
self.norm = norm
self.epsilon = epsilon
self.loss_weight = loss_weight
def forward(self, betas):
"""Forward function of loss.
Args:
betas (torch.Tensor): The body shape parameters
Returns:
torch.Tensor: The calculated loss
"""
abs_values = betas.abs()
mask = abs_values.gt(self.margin)
invalid_values = torch.masked_select(betas, mask)
if self.norm == 'l1':
return self.loss_weight * invalid_values.abs().sum() / (
mask.to(dtype=betas.dtype).sum() + self.epsilon)
elif self.norm == 'l2':
return self.loss_weight * invalid_values.pow(2).sum() / (
mask.to(dtype=betas.dtype).sum() + self.epsilon)
class PoseRegLoss(nn.Module):
"""Regulizer loss for body pose parameters.
Args:
reduction (str, optional): The method that reduces the loss to a
scalar. Options are "none", "mean" and "sum".
loss_weight (float, optional): The weight of the loss. Defaults to 1.0
"""
def __init__(self, reduction='mean', loss_weight=1.0):
super().__init__()
assert reduction in (None, 'none', 'mean', 'sum')
self.reduction = reduction
self.loss_weight = loss_weight
def forward(self,
body_pose,
weight=None,
avg_factor=None,
loss_weight_override=None,
reduction_override=None):
reduction = (reduction_override
if reduction_override else self.reduction)
loss_weight = (loss_weight_override if loss_weight_override is not None
else self.loss_weight)
pose_prior_loss = loss_weight * (body_pose**2)
if reduction == 'mean':
pose_prior_loss = pose_prior_loss.mean()
elif reduction == 'sum':
pose_prior_loss = pose_prior_loss.sum()
return pose_prior_loss
class LimbLengthLoss(nn.Module):
"""Limb length loss for body shape parameters. As betas are associated with
the height of a person, fitting on limb length help determine body shape
parameters. It penalizes the L2 distance between target limb length and
pred limb length. Note that it should take keypoints3d as input, as limb
length computed from keypoints2d varies with camera.
Args:
convention (str): Limb convention to search for keypoint connections.
reduction (str, optional): The method that reduces the loss to a
scalar. Options are "none", "mean" and "sum".
loss_weight (float, optional): The weight of the loss. Defaults to 1.0
eps (float, optional): epsilon for computing normalized limb vector.
Defaults to 1e-4.
"""
def __init__(self,
convention,
reduction='mean',
loss_weight=1.0,
eps=1e-4):
super().__init__()
assert reduction in (None, 'none', 'mean', 'sum')
self.reduction = reduction
self.loss_weight = loss_weight
self.eps = eps
limb_idxs, _ = search_limbs(data_source=convention)
limb_idxs = sorted(limb_idxs['body'])
self.limb_idxs = np.array(
list(x for x, _ in itertools.groupby(limb_idxs)))
def _compute_limb_length(self, keypoints3d):
kp_src = keypoints3d[:, self.limb_idxs[:, 0], :3]
kp_dst = keypoints3d[:, self.limb_idxs[:, 1], :3]
limb_vec = kp_dst - kp_src
limb_length = torch.norm(limb_vec, dim=2)
return limb_length
def _keypoint_conf_to_limb_conf(self, keypoint_conf):
limb_conf = torch.min(keypoint_conf[:, self.limb_idxs[:, 1]],
keypoint_conf[:, self.limb_idxs[:, 0]])
return limb_conf
def forward(self,
pred,
target,
pred_conf=None,
target_conf=None,
loss_weight_override=None,
reduction_override=None):
"""Forward function of LimbLengthLoss.
Args:
pred (torch.Tensor): The predicted smpl keypoints3d.
Shape should be (N, K, 3).
B: batch size. K: number of keypoints.
target (torch.Tensor): The ground-truth keypoints3d.
Shape should be (N, K, 3).
pred_conf (torch.Tensor, optional): Confidence of
predicted keypoints. Shape should be (N, K).
target_conf (torch.Tensor, optional): Confidence of
target keypoints. Shape should be (N, K).
loss_weight_override (float, optional): The weight of loss used to
override the original weight of loss. Defaults to None.
reduction_override (str, optional): The reduction method used to
override the original reduction method of the loss.
Defaults to None
Returns:
torch.Tensor: The calculated loss
"""
assert pred.dim() == 3 and pred.shape[-1] == 3
assert pred.shape == target.shape
if pred_conf is not None:
assert pred_conf.dim() == 2
assert pred_conf.shape == pred.shape[:2]
if target_conf is not None:
assert target_conf.dim() == 2
assert target_conf.shape == target.shape[:2]
assert reduction_override in (None, 'none', 'mean', 'sum')
reduction = (reduction_override
if reduction_override else self.reduction)
loss_weight = (loss_weight_override if loss_weight_override is not None
else self.loss_weight)
limb_len_target = self._compute_limb_length(target)
limb_len_pred = self._compute_limb_length(pred)
if target_conf is None:
target_conf = torch.ones_like(target[..., 0])
if pred_conf is None:
pred_conf = torch.ones_like(pred[..., 0])
limb_conf_target = self._keypoint_conf_to_limb_conf(target_conf)
limb_conf_pred = self._keypoint_conf_to_limb_conf(pred_conf)
limb_conf = limb_conf_target * limb_conf_pred
diff_len = limb_len_target - limb_len_pred
loss = diff_len**2 * limb_conf
if reduction == 'mean':
loss = loss.mean()
elif reduction == 'sum':
loss = loss.sum()
loss *= loss_weight
return loss
class JointPriorLoss(nn.Module):
"""Prior loss for joint angles.
Args:
reduction (str, optional): The method that reduces the loss to a
scalar. Options are "none", "mean" and "sum".
loss_weight (float, optional): The weight of the loss. Defaults to 1.0
use_full_body (bool, optional): Use full set of joint constraints
(in standard joint angles).
smooth_spine (bool, optional): Ensuring smooth spine rotations
smooth_spine_loss_weight (float, optional): An additional weight
factor multiplied on smooth spine loss
"""
def __init__(self,
reduction='mean',
loss_weight=1.0,
use_full_body=False,
smooth_spine=False,
smooth_spine_loss_weight=1.0):
super().__init__()
assert reduction in (None, 'none', 'mean', 'sum')
self.reduction = reduction
self.loss_weight = loss_weight
self.use_full_body = use_full_body
self.smooth_spine = smooth_spine
self.smooth_spine_loss_weight = smooth_spine_loss_weight
if self.use_full_body:
self.register_buffer('R_t', TRANSFORMATION_AA_TO_SJA)
self.register_buffer('R_t_inv', TRANSFORMATION_SJA_TO_AA)
self.register_buffer('sja_limits', STANDARD_JOINT_ANGLE_LIMITS)
def forward(self,
body_pose,
loss_weight_override=None,
reduction_override=None):
"""Forward function of loss.
Args:
body_pose (torch.Tensor): The body pose parameters
loss_weight_override (float, optional): The weight of loss used to
override the original weight of loss
reduction_override (str, optional): The reduction method used to
override the original reduction method of the loss.
Defaults to None
Returns:
torch.Tensor: The calculated loss
"""
assert reduction_override in (None, 'none', 'mean', 'sum')
reduction = (reduction_override
if reduction_override else self.reduction)
loss_weight = (loss_weight_override if loss_weight_override is not None
else self.loss_weight)
if self.use_full_body:
batch_size = body_pose.shape[0]
body_pose_reshape = body_pose.reshape(batch_size, -1, 3)
assert body_pose_reshape.shape[1] in (21, 23) # smpl-x, smpl
body_pose_reshape = body_pose_reshape[:, :21, :]
body_pose_sja = aa_to_sja(body_pose_reshape, self.R_t,
self.R_t_inv)
lower_limits = self.sja_limits[:, :, 0] # shape: (21, 3)
upper_limits = self.sja_limits[:, :, 1] # shape: (21, 3)
lower_loss = (torch.exp(F.relu(lower_limits - body_pose_sja)) -
1).pow(2)
upper_loss = (torch.exp(F.relu(body_pose_sja - upper_limits)) -
1).pow(2)
standard_joint_angle_prior_loss = (lower_loss + upper_loss).view(
body_pose.shape[0], -1) # shape: (n, 3)
joint_prior_loss = standard_joint_angle_prior_loss
else:
# default joint prior loss applied on elbows and knees
joint_prior_loss = (torch.exp(
body_pose[:, [55, 58, 12, 15]] *
torch.tensor([1., -1., -1, -1.], device=body_pose.device)) -
1)**2
if self.smooth_spine:
spine1 = body_pose[:, [9, 10, 11]]
spine2 = body_pose[:, [18, 19, 20]]
spine3 = body_pose[:, [27, 28, 29]]
smooth_spine_loss_12 = (torch.exp(F.relu(-spine1 * spine2)) -
1).pow(2) * self.smooth_spine_loss_weight
smooth_spine_loss_23 = (torch.exp(F.relu(-spine2 * spine3)) -
1).pow(2) * self.smooth_spine_loss_weight
joint_prior_loss = torch.cat(
[joint_prior_loss, smooth_spine_loss_12, smooth_spine_loss_23],
axis=1)
joint_prior_loss = loss_weight * joint_prior_loss
if reduction == 'mean':
joint_prior_loss = joint_prior_loss.mean()
elif reduction == 'sum':
joint_prior_loss = joint_prior_loss.sum()
return joint_prior_loss
class SmoothJointLoss(nn.Module):
"""Smooth loss for joint angles.
Args:
reduction (str, optional): The method that reduces the loss to a
scalar. Options are "none", "mean" and "sum".
loss_weight (float, optional): The weight of the loss. Defaults to 1.0
degree (bool, optional): The flag which represents whether the input
tensor is in degree or radian.
"""
def __init__(self,
reduction='mean',
loss_weight=1.0,
degree=False,
loss_func='L1'):
super().__init__()
assert reduction in (None, 'none', 'mean', 'sum')
assert loss_func in ('L1', 'L2')
self.reduction = reduction
self.loss_weight = loss_weight
self.degree = degree
self.loss_func = loss_func
def forward(self,
body_pose,
loss_weight_override=None,
reduction_override=None):
"""Forward function of SmoothJointLoss.
Args:
body_pose (torch.Tensor): The body pose parameters
loss_weight_override (float, optional): The weight of loss used to
override the original weight of loss
reduction_override (str, optional): The reduction method used to
override the original reduction method of the loss.
Defaults to None
Returns:
torch.Tensor: The calculated loss
"""
assert reduction_override in (None, 'none', 'mean', 'sum')
reduction = (reduction_override
if reduction_override else self.reduction)
loss_weight = (loss_weight_override if loss_weight_override is not None
else self.loss_weight)
theta = body_pose.reshape(body_pose.shape[0], -1, 3)
if self.degree:
theta = torch.deg2rad(theta)
rot_6d = aa_to_rot6d(theta)
rot_6d_diff = rot_6d[1:] - rot_6d[:-1]
if self.loss_func == 'L2':
smooth_joint_loss = (rot_6d_diff**2).sum(dim=[1, 2])
elif self.loss_func == 'L1':
smooth_joint_loss = rot_6d_diff.abs().sum(dim=[1, 2])
else:
raise TypeError(f'{self.func} is not defined')
# add zero padding to retain original batch_size
smooth_joint_loss = torch.cat(
[torch.zeros_like(smooth_joint_loss)[:1], smooth_joint_loss])
if reduction == 'mean':
smooth_joint_loss = smooth_joint_loss.mean()
elif reduction == 'sum':
smooth_joint_loss = smooth_joint_loss.sum()
smooth_joint_loss *= loss_weight
return smooth_joint_loss
class SmoothPelvisLoss(nn.Module):
"""Smooth loss for pelvis angles.
Args:
reduction (str, optional): The method that reduces the loss to a
scalar. Options are "none", "mean" and "sum".
loss_weight (float, optional): The weight of the loss. Defaults to 1.0
degree (bool, optional): The flag which represents whether the input
tensor is in degree or radian.
"""
def __init__(self, reduction='mean', loss_weight=1.0, degree=False):
super().__init__()
assert reduction in (None, 'none', 'mean', 'sum')
self.reduction = reduction
self.loss_weight = loss_weight
self.degree = degree
def forward(self,
global_orient,
loss_weight_override=None,
reduction_override=None):
"""Forward function of SmoothPelvisLoss.
Args:
global_orient (torch.Tensor): The global orientation parameters
loss_weight_override (float, optional): The weight of loss used to
override the original weight of loss
reduction_override (str, optional): The reduction method used to
override the original reduction method of the loss.
Defaults to None
Returns:
torch.Tensor: The calculated loss
"""
assert reduction_override in (None, 'none', 'mean', 'sum')
reduction = (reduction_override
if reduction_override else self.reduction)
loss_weight = (loss_weight_override if loss_weight_override is not None
else self.loss_weight)
if self.degree:
global_orient = torch.deg2rad(global_orient)
pelvis = global_orient.unsqueeze(1)
rot_6d = aa_to_rot6d(pelvis)
rot_6d_diff = rot_6d[1:] - rot_6d[:-1]
smooth_pelvis_loss = rot_6d_diff.abs().sum(dim=-1)
# add zero padding to retain original batch_size
smooth_pelvis_loss = torch.cat(
[torch.zeros_like(smooth_pelvis_loss)[:1],
smooth_pelvis_loss]).sum(dim=-1)
smooth_pelvis_loss = loss_weight * smooth_pelvis_loss
if reduction == 'mean':
smooth_pelvis_loss = smooth_pelvis_loss.mean()
elif reduction == 'sum':
smooth_pelvis_loss = smooth_pelvis_loss.sum()
return smooth_pelvis_loss
class SmoothTranslationLoss(nn.Module):
"""Smooth loss for translations.
Args:
reduction (str, optional): The method that reduces the loss to a
scalar. Options are "none", "mean" and "sum".
loss_weight (float, optional): The weight of the loss. Defaults to 1.0
"""
def __init__(self, reduction='mean', loss_weight=1.0):
super().__init__()
assert reduction in (None, 'none', 'mean', 'sum')
self.reduction = reduction
self.loss_weight = loss_weight
def forward(self,
translation,
loss_weight_override=None,
reduction_override=None):
"""Forward function of loss.
Args:
translation (torch.Tensor): The body translation parameters
loss_weight_override (float, optional): The weight of loss used to
override the original weight of loss
reduction_override (str, optional): The reduction method used to
override the original reduction method of the loss.
Defaults to None
Returns:
torch.Tensor: The calculated loss
"""
assert reduction_override in (None, 'none', 'mean', 'sum')
reduction = (reduction_override
if reduction_override else self.reduction)
loss_weight = (loss_weight_override if loss_weight_override is not None
else self.loss_weight)
translation_diff = translation[1:] - translation[:-1]
smooth_translation_loss = translation_diff.abs().sum(dim=-1,
keepdim=True)
# add zero padding to retain original batch_size
smooth_translation_loss = torch.cat([
torch.zeros_like(smooth_translation_loss)[:1],
smooth_translation_loss
]).sum(dim=-1)
smooth_translation_loss *= 1e3
smooth_translation_loss = loss_weight * \
smooth_translation_loss
if reduction == 'mean':
smooth_translation_loss = smooth_translation_loss.mean()
elif reduction == 'sum':
smooth_translation_loss = smooth_translation_loss.sum()
return smooth_translation_loss
class CameraPriorLoss(nn.Module):
"""Prior loss for predicted camera.
Args:
reduction (str, optional): The method that reduces the loss to a
scalar. Options are "none", "mean" and "sum".
scale (float, optional): The scale coefficient for regularizing camera
parameters. Defaults to 10
loss_weight (float, optional): The weight of the loss. Defaults to 1.0
"""
def __init__(self, scale=10, reduction='mean', loss_weight=1.0):
super().__init__()
self.scale = scale
self.reduction = reduction
self.loss_weight = loss_weight
def forward(self,
cameras,
loss_weight_override=None,
reduction_override=None):
"""Forward function of loss.
Args:
cameras (torch.Tensor): The predicted camera parameters
loss_weight_override (float, optional): The weight of loss used to
override the original weight of loss
reduction_override (str, optional): The reduction method used to
override the original reduction method of the loss.
Defaults to None
Returns:
torch.Tensor: The calculated loss
"""
assert reduction_override in (None, 'none', 'mean', 'sum')
reduction = (reduction_override
if reduction_override else self.reduction)
loss_weight = (loss_weight_override if loss_weight_override is not None
else self.loss_weight)
camera_prior_loss = torch.exp(-cameras[:, 0] * self.scale)
camera_prior_loss = torch.pow(camera_prior_loss, 2) * loss_weight
if reduction == 'mean':
camera_prior_loss = camera_prior_loss.mean()
elif reduction == 'sum':
camera_prior_loss = camera_prior_loss.sum()
return camera_prior_loss
class MaxMixturePrior(nn.Module):
"""Ref: SMPLify-X
https://github.com/vchoutas/smplify-x/blob/master/smplifyx/prior.py
"""
def __init__(self,
prior_folder='data',
num_gaussians=8,
dtype=torch.float32,
epsilon=1e-16,
use_merged=True,
reduction=None,
loss_weight=1.0):
super(MaxMixturePrior, self).__init__()
assert reduction in (None, 'none', 'mean', 'sum')
self.reduction = reduction
self.loss_weight = loss_weight
if dtype == torch.float32:
np_dtype = np.float32
elif dtype == torch.float64:
np_dtype = np.float64
else:
print('Unknown float type {}, exiting!'.format(dtype))
sys.exit(-1)
self.num_gaussians = num_gaussians
self.epsilon = epsilon
self.use_merged = use_merged
gmm_fn = 'gmm_{:02d}.pkl'.format(num_gaussians)
full_gmm_fn = os.path.join(prior_folder, gmm_fn)
if not os.path.exists(full_gmm_fn):
print('The path to the mixture prior "{}"'.format(full_gmm_fn) +
' does not exist, exiting!')
sys.exit(-1)
with open(full_gmm_fn, 'rb') as f:
gmm = pickle.load(f, encoding='latin1')
if type(gmm) == dict:
means = gmm['means'].astype(np_dtype)
covs = gmm['covars'].astype(np_dtype)
weights = gmm['weights'].astype(np_dtype)
elif 'sklearn.mixture.gmm.GMM' in str(type(gmm)):
means = gmm.means_.astype(np_dtype)
covs = gmm.covars_.astype(np_dtype)
weights = gmm.weights_.astype(np_dtype)
else:
print('Unknown type for the prior: {}, exiting!'.format(type(gmm)))
sys.exit(-1)
self.register_buffer('means', torch.tensor(means, dtype=dtype))
self.register_buffer('covs', torch.tensor(covs, dtype=dtype))
precisions = [np.linalg.inv(cov) for cov in covs]
precisions = np.stack(precisions).astype(np_dtype)
self.register_buffer('precisions', torch.tensor(precisions,
dtype=dtype))
# The constant term:
sqrdets = np.array([(np.sqrt(np.linalg.det(c)))
for c in gmm['covars']])
const = (2 * np.pi)**(69 / 2.)
nll_weights = np.asarray(gmm['weights'] / (const *
(sqrdets / sqrdets.min())))
nll_weights = torch.tensor(nll_weights, dtype=dtype).unsqueeze(dim=0)
self.register_buffer('nll_weights', nll_weights)
weights = torch.tensor(gmm['weights'], dtype=dtype).unsqueeze(dim=0)
self.register_buffer('weights', weights)
self.register_buffer('pi_term',
torch.log(torch.tensor(2 * np.pi, dtype=dtype)))
cov_dets = [
np.log(np.linalg.det(cov.astype(np_dtype)) + epsilon)
for cov in covs
]
self.register_buffer('cov_dets', torch.tensor(cov_dets, dtype=dtype))
# The dimensionality of the random variable
self.random_var_dim = self.means.shape[1]
def get_mean(self):
"""Returns the mean of the mixture."""
mean_pose = torch.matmul(self.weights, self.means)
return mean_pose
def merged_log_likelihood(self, pose):
diff_from_mean = pose.unsqueeze(dim=1) - self.means
prec_diff_prod = torch.einsum('mij,bmj->bmi',
[self.precisions, diff_from_mean])
diff_prec_quadratic = (prec_diff_prod * diff_from_mean).sum(dim=-1)
curr_loglikelihood = 0.5 * diff_prec_quadratic - \
torch.log(self.nll_weights)
# curr_loglikelihood = 0.5 * (self.cov_dets.unsqueeze(dim=0) +
# self.random_var_dim * self.pi_term +
# diff_prec_quadratic
# ) - torch.log(self.weights)
min_likelihood, _ = torch.min(curr_loglikelihood, dim=1)
return min_likelihood
def log_likelihood(self, pose):
"""Create graph operation for negative log-likelihood calculation."""
likelihoods = []
for idx in range(self.num_gaussians):
mean = self.means[idx]
prec = self.precisions[idx]
cov = self.covs[idx]
diff_from_mean = pose - mean
curr_loglikelihood = torch.einsum('bj,ji->bi',
[diff_from_mean, prec])
curr_loglikelihood = torch.einsum(
'bi,bi->b', [curr_loglikelihood, diff_from_mean])
cov_term = torch.log(torch.det(cov) + self.epsilon)
curr_loglikelihood += 0.5 * (cov_term +
self.random_var_dim * self.pi_term)
likelihoods.append(curr_loglikelihood)
log_likelihoods = torch.stack(likelihoods, dim=1)
min_idx = torch.argmin(log_likelihoods, dim=1)
weight_component = self.nll_weights[:, min_idx]
weight_component = -torch.log(weight_component)
return weight_component + log_likelihoods[:, min_idx]
def forward(self,
body_pose,
loss_weight_override=None,
reduction_override=None):
assert reduction_override in (None, 'none', 'mean', 'sum')
reduction = (reduction_override
if reduction_override else self.reduction)
loss_weight = (loss_weight_override if loss_weight_override is not None
else self.loss_weight)
if self.use_merged:
pose_prior_loss = self.merged_log_likelihood(body_pose)
else:
pose_prior_loss = self.log_likelihood(body_pose)
pose_prior_loss = loss_weight * pose_prior_loss
if reduction == 'mean':
pose_prior_loss = pose_prior_loss.mean()
elif reduction == 'sum':
pose_prior_loss = pose_prior_loss.sum()
return pose_prior_loss
|