Spaces:
Sleeping
Sleeping
File size: 16,591 Bytes
d7e58f0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 |
# Copyright (c) OpenMMLab. All rights reserved.
import math
import warnings
import mmcv
import torch
import torch.nn as nn
from mmdet.core import bbox_overlaps
from .utils import weighted_loss
@mmcv.jit(derivate=True, coderize=True)
@weighted_loss
def iou_loss(pred, target, linear=False, mode='log', eps=1e-6):
"""IoU loss.
Computing the IoU loss between a set of predicted bboxes and target bboxes.
The loss is calculated as negative log of IoU.
Args:
pred (torch.Tensor): Predicted bboxes of format (x1, y1, x2, y2),
shape (n, 4).
target (torch.Tensor): Corresponding gt bboxes, shape (n, 4).
linear (bool, optional): If True, use linear scale of loss instead of
log scale. Default: False.
mode (str): Loss scaling mode, including "linear", "square", and "log".
Default: 'log'
eps (float): Eps to avoid log(0).
Return:
torch.Tensor: Loss tensor.
"""
assert mode in ['linear', 'square', 'log']
if linear:
mode = 'linear'
warnings.warn('DeprecationWarning: Setting "linear=True" in '
'iou_loss is deprecated, please use "mode=`linear`" '
'instead.')
ious = bbox_overlaps(pred, target, is_aligned=True).clamp(min=eps)
if mode == 'linear':
loss = 1 - ious
elif mode == 'square':
loss = 1 - ious**2
elif mode == 'log':
loss = -ious.log()
else:
raise NotImplementedError
return loss
@mmcv.jit(derivate=True, coderize=True)
@weighted_loss
def bounded_iou_loss(pred, target, beta=0.2, eps=1e-3):
"""BIoULoss.
This is an implementation of paper
`Improving Object Localization with Fitness NMS and Bounded IoU Loss.
<https://arxiv.org/abs/1711.00164>`_.
Args:
pred (torch.Tensor): Predicted bboxes.
target (torch.Tensor): Target bboxes.
beta (float): beta parameter in smoothl1.
eps (float): eps to avoid NaN.
"""
pred_ctrx = (pred[:, 0] + pred[:, 2]) * 0.5
pred_ctry = (pred[:, 1] + pred[:, 3]) * 0.5
pred_w = pred[:, 2] - pred[:, 0]
pred_h = pred[:, 3] - pred[:, 1]
with torch.no_grad():
target_ctrx = (target[:, 0] + target[:, 2]) * 0.5
target_ctry = (target[:, 1] + target[:, 3]) * 0.5
target_w = target[:, 2] - target[:, 0]
target_h = target[:, 3] - target[:, 1]
dx = target_ctrx - pred_ctrx
dy = target_ctry - pred_ctry
loss_dx = 1 - torch.max(
(target_w - 2 * dx.abs()) /
(target_w + 2 * dx.abs() + eps), torch.zeros_like(dx))
loss_dy = 1 - torch.max(
(target_h - 2 * dy.abs()) /
(target_h + 2 * dy.abs() + eps), torch.zeros_like(dy))
loss_dw = 1 - torch.min(target_w / (pred_w + eps), pred_w /
(target_w + eps))
loss_dh = 1 - torch.min(target_h / (pred_h + eps), pred_h /
(target_h + eps))
# view(..., -1) does not work for empty tensor
loss_comb = torch.stack([loss_dx, loss_dy, loss_dw, loss_dh],
dim=-1).flatten(1)
loss = torch.where(loss_comb < beta, 0.5 * loss_comb * loss_comb / beta,
loss_comb - 0.5 * beta)
return loss
@mmcv.jit(derivate=True, coderize=True)
@weighted_loss
def giou_loss(pred, target, eps=1e-7):
r"""`Generalized Intersection over Union: A Metric and A Loss for Bounding
Box Regression <https://arxiv.org/abs/1902.09630>`_.
Args:
pred (torch.Tensor): Predicted bboxes of format (x1, y1, x2, y2),
shape (n, 4).
target (torch.Tensor): Corresponding gt bboxes, shape (n, 4).
eps (float): Eps to avoid log(0).
Return:
Tensor: Loss tensor.
"""
gious = bbox_overlaps(pred, target, mode='giou', is_aligned=True, eps=eps)
loss = 1 - gious
return loss
@mmcv.jit(derivate=True, coderize=True)
@weighted_loss
def diou_loss(pred, target, eps=1e-7):
r"""`Implementation of Distance-IoU Loss: Faster and Better
Learning for Bounding Box Regression, https://arxiv.org/abs/1911.08287`_.
Code is modified from https://github.com/Zzh-tju/DIoU.
Args:
pred (Tensor): Predicted bboxes of format (x1, y1, x2, y2),
shape (n, 4).
target (Tensor): Corresponding gt bboxes, shape (n, 4).
eps (float): Eps to avoid log(0).
Return:
Tensor: Loss tensor.
"""
# overlap
lt = torch.max(pred[:, :2], target[:, :2])
rb = torch.min(pred[:, 2:], target[:, 2:])
wh = (rb - lt).clamp(min=0)
overlap = wh[:, 0] * wh[:, 1]
# union
ap = (pred[:, 2] - pred[:, 0]) * (pred[:, 3] - pred[:, 1])
ag = (target[:, 2] - target[:, 0]) * (target[:, 3] - target[:, 1])
union = ap + ag - overlap + eps
# IoU
ious = overlap / union
# enclose area
enclose_x1y1 = torch.min(pred[:, :2], target[:, :2])
enclose_x2y2 = torch.max(pred[:, 2:], target[:, 2:])
enclose_wh = (enclose_x2y2 - enclose_x1y1).clamp(min=0)
cw = enclose_wh[:, 0]
ch = enclose_wh[:, 1]
c2 = cw**2 + ch**2 + eps
b1_x1, b1_y1 = pred[:, 0], pred[:, 1]
b1_x2, b1_y2 = pred[:, 2], pred[:, 3]
b2_x1, b2_y1 = target[:, 0], target[:, 1]
b2_x2, b2_y2 = target[:, 2], target[:, 3]
left = ((b2_x1 + b2_x2) - (b1_x1 + b1_x2))**2 / 4
right = ((b2_y1 + b2_y2) - (b1_y1 + b1_y2))**2 / 4
rho2 = left + right
# DIoU
dious = ious - rho2 / c2
loss = 1 - dious
return loss
@mmcv.jit(derivate=True, coderize=True)
@weighted_loss
def ciou_loss(pred, target, eps=1e-7):
r"""`Implementation of paper `Enhancing Geometric Factors into
Model Learning and Inference for Object Detection and Instance
Segmentation <https://arxiv.org/abs/2005.03572>`_.
Code is modified from https://github.com/Zzh-tju/CIoU.
Args:
pred (Tensor): Predicted bboxes of format (x1, y1, x2, y2),
shape (n, 4).
target (Tensor): Corresponding gt bboxes, shape (n, 4).
eps (float): Eps to avoid log(0).
Return:
Tensor: Loss tensor.
"""
# overlap
lt = torch.max(pred[:, :2], target[:, :2])
rb = torch.min(pred[:, 2:], target[:, 2:])
wh = (rb - lt).clamp(min=0)
overlap = wh[:, 0] * wh[:, 1]
# union
ap = (pred[:, 2] - pred[:, 0]) * (pred[:, 3] - pred[:, 1])
ag = (target[:, 2] - target[:, 0]) * (target[:, 3] - target[:, 1])
union = ap + ag - overlap + eps
# IoU
ious = overlap / union
# enclose area
enclose_x1y1 = torch.min(pred[:, :2], target[:, :2])
enclose_x2y2 = torch.max(pred[:, 2:], target[:, 2:])
enclose_wh = (enclose_x2y2 - enclose_x1y1).clamp(min=0)
cw = enclose_wh[:, 0]
ch = enclose_wh[:, 1]
c2 = cw**2 + ch**2 + eps
b1_x1, b1_y1 = pred[:, 0], pred[:, 1]
b1_x2, b1_y2 = pred[:, 2], pred[:, 3]
b2_x1, b2_y1 = target[:, 0], target[:, 1]
b2_x2, b2_y2 = target[:, 2], target[:, 3]
w1, h1 = b1_x2 - b1_x1, b1_y2 - b1_y1 + eps
w2, h2 = b2_x2 - b2_x1, b2_y2 - b2_y1 + eps
left = ((b2_x1 + b2_x2) - (b1_x1 + b1_x2))**2 / 4
right = ((b2_y1 + b2_y2) - (b1_y1 + b1_y2))**2 / 4
rho2 = left + right
factor = 4 / math.pi**2
v = factor * torch.pow(torch.atan(w2 / h2) - torch.atan(w1 / h1), 2)
with torch.no_grad():
alpha = (ious > 0.5).float() * v / (1 - ious + v)
# CIoU
cious = ious - (rho2 / c2 + alpha * v)
loss = 1 - cious.clamp(min=-1.0, max=1.0)
return loss
class IoULoss(nn.Module):
"""IoULoss.
Computing the IoU loss between a set of predicted bboxes and target bboxes.
Args:
linear (bool): If True, use linear scale of loss else determined
by mode. Default: False.
eps (float): Eps to avoid log(0).
reduction (str): Options are "none", "mean" and "sum".
loss_weight (float): Weight of loss.
mode (str): Loss scaling mode, including "linear", "square", and "log".
Default: 'log'
"""
def __init__(self,
linear=False,
eps=1e-6,
reduction='mean',
loss_weight=1.0,
mode='log'):
super(IoULoss, self).__init__()
assert mode in ['linear', 'square', 'log']
if linear:
mode = 'linear'
warnings.warn('DeprecationWarning: Setting "linear=True" in '
'IOULoss is deprecated, please use "mode=`linear`" '
'instead.')
self.mode = mode
self.linear = linear
self.eps = eps
self.reduction = reduction
self.loss_weight = loss_weight
def forward(self,
pred,
target,
weight=None,
avg_factor=None,
reduction_override=None,
**kwargs):
"""Forward function.
Args:
pred (torch.Tensor): The prediction.
target (torch.Tensor): The learning target of the prediction.
weight (torch.Tensor, optional): The weight of loss for each
prediction. Defaults to None.
avg_factor (int, optional): Average factor that is used to average
the loss. Defaults to None.
reduction_override (str, optional): The reduction method used to
override the original reduction method of the loss.
Defaults to None. Options are "none", "mean" and "sum".
"""
assert reduction_override in (None, 'none', 'mean', 'sum')
reduction = (reduction_override
if reduction_override else self.reduction)
if (weight is not None) and (not torch.any(weight > 0)) and (
reduction != 'none'):
if pred.dim() == weight.dim() + 1:
weight = weight.unsqueeze(1)
return (pred * weight).sum() # 0
if weight is not None and weight.dim() > 1:
# TODO: remove this in the future
# reduce the weight of shape (n, 4) to (n,) to match the
# iou_loss of shape (n,)
assert weight.shape == pred.shape
weight = weight.mean(-1)
loss = self.loss_weight * iou_loss(pred,
target,
weight,
mode=self.mode,
eps=self.eps,
reduction=reduction,
avg_factor=avg_factor,
**kwargs)
return loss
class BoundedIoULoss(nn.Module):
def __init__(self, beta=0.2, eps=1e-3, reduction='mean', loss_weight=1.0):
super(BoundedIoULoss, self).__init__()
self.beta = beta
self.eps = eps
self.reduction = reduction
self.loss_weight = loss_weight
def forward(self,
pred,
target,
weight=None,
avg_factor=None,
reduction_override=None,
**kwargs):
if weight is not None and not torch.any(weight > 0):
if pred.dim() == weight.dim() + 1:
weight = weight.unsqueeze(1)
return (pred * weight).sum() # 0
assert reduction_override in (None, 'none', 'mean', 'sum')
reduction = (reduction_override
if reduction_override else self.reduction)
loss = self.loss_weight * bounded_iou_loss(pred,
target,
weight,
beta=self.beta,
eps=self.eps,
reduction=reduction,
avg_factor=avg_factor,
**kwargs)
return loss
class GIoULoss(nn.Module):
def __init__(self, eps=1e-6, reduction='mean', loss_weight=1.0):
super(GIoULoss, self).__init__()
self.eps = eps
self.reduction = reduction
self.loss_weight = loss_weight
def forward(self,
pred,
target,
weight=None,
avg_factor=None,
reduction_override=None,
**kwargs):
if weight is not None and not torch.any(weight > 0):
if pred.dim() == weight.dim() + 1:
weight = weight.unsqueeze(1)
return (pred * weight).sum() # 0
assert reduction_override in (None, 'none', 'mean', 'sum')
reduction = (reduction_override
if reduction_override else self.reduction)
if weight is not None and weight.dim() > 1:
# TODO: remove this in the future
# reduce the weight of shape (n, 4) to (n,) to match the
# giou_loss of shape (n,)
assert weight.shape == pred.shape
weight = weight.mean(-1)
loss = self.loss_weight * giou_loss(pred,
target,
weight,
eps=self.eps,
reduction=reduction,
avg_factor=avg_factor,
**kwargs)
return loss
class DIoULoss(nn.Module):
def __init__(self, eps=1e-6, reduction='mean', loss_weight=1.0):
super(DIoULoss, self).__init__()
self.eps = eps
self.reduction = reduction
self.loss_weight = loss_weight
def forward(self,
pred,
target,
weight=None,
avg_factor=None,
reduction_override=None,
**kwargs):
if weight is not None and not torch.any(weight > 0):
if pred.dim() == weight.dim() + 1:
weight = weight.unsqueeze(1)
return (pred * weight).sum() # 0
assert reduction_override in (None, 'none', 'mean', 'sum')
reduction = (reduction_override
if reduction_override else self.reduction)
if weight is not None and weight.dim() > 1:
# TODO: remove this in the future
# reduce the weight of shape (n, 4) to (n,) to match the
# giou_loss of shape (n,)
assert weight.shape == pred.shape
weight = weight.mean(-1)
loss = self.loss_weight * diou_loss(pred,
target,
weight,
eps=self.eps,
reduction=reduction,
avg_factor=avg_factor,
**kwargs)
return loss
class CIoULoss(nn.Module):
def __init__(self, eps=1e-6, reduction='mean', loss_weight=1.0):
super(CIoULoss, self).__init__()
self.eps = eps
self.reduction = reduction
self.loss_weight = loss_weight
def forward(self,
pred,
target,
weight=None,
avg_factor=None,
reduction_override=None,
**kwargs):
if weight is not None and not torch.any(weight > 0):
if pred.dim() == weight.dim() + 1:
weight = weight.unsqueeze(1)
return (pred * weight).sum() # 0
assert reduction_override in (None, 'none', 'mean', 'sum')
reduction = (reduction_override
if reduction_override else self.reduction)
if weight is not None and weight.dim() > 1:
# TODO: remove this in the future
# reduce the weight of shape (n, 4) to (n,) to match the
# giou_loss of shape (n,)
assert weight.shape == pred.shape
weight = weight.mean(-1)
loss = self.loss_weight * ciou_loss(pred,
target,
weight,
eps=self.eps,
reduction=reduction,
avg_factor=avg_factor,
**kwargs)
return loss
|