Spaces:
Sleeping
Sleeping
File size: 15,591 Bytes
d7e58f0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 |
from typing import Optional
import numpy as np
import torch
from smplx import SMPLX as _SMPLX
from smplx import SMPLXLayer as _SMPLXLayer
from smplx.lbs import vertices2joints
from detrsmpl.core.conventions.keypoints_mapping import (
convert_kps,
get_keypoint_num,
)
from detrsmpl.core.conventions.segmentation import body_segmentation
class SMPLX(_SMPLX):
"""Extension of the official SMPL-X implementation."""
body_pose_keys = {'global_orient', 'body_pose'}
full_pose_keys = {
'global_orient', 'body_pose', 'left_hand_pose', 'right_hand_pose',
'jaw_pose', 'leye_pose', 'reye_pose'
}
NUM_VERTS = 10475
NUM_FACES = 20908
def __init__(self,
*args,
keypoint_src: str = 'smplx',
keypoint_dst: str = 'human_data',
keypoint_approximate: bool = False,
joints_regressor: str = None,
extra_joints_regressor: str = None,
**kwargs):
"""
Args:
*args: extra arguments for SMPL initialization.
keypoint_src: source convention of keypoints. This convention
is used for keypoints obtained from joint regressors.
Keypoints then undergo conversion into keypoint_dst
convention.
keypoint_dst: destination convention of keypoints. This convention
is used for keypoints in the output.
keypoint_approximate: whether to use approximate matching in
convention conversion for keypoints.
joints_regressor: path to joint regressor. Should be a .npy
file. If provided, replaces the official J_regressor of SMPL.
extra_joints_regressor: path to extra joint regressor. Should be
a .npy file. If provided, extra joints are regressed and
concatenated after the joints regressed with the official
J_regressor or joints_regressor.
**kwargs: extra keyword arguments for SMPL initialization.
Returns:
None
"""
super(SMPLX, self).__init__(*args, **kwargs)
# joints = [JOINT_MAP[i] for i in JOINT_NAMES]
self.keypoint_src = keypoint_src
self.keypoint_dst = keypoint_dst
self.keypoint_approximate = keypoint_approximate
# override the default SMPL joint regressor if available
if joints_regressor is not None:
joints_regressor = torch.tensor(np.load(joints_regressor),
dtype=torch.float)
self.register_buffer('joints_regressor', joints_regressor)
# allow for extra joints to be regressed if available
if extra_joints_regressor is not None:
joints_regressor_extra = torch.tensor(
np.load(extra_joints_regressor), dtype=torch.float)
self.register_buffer('joints_regressor_extra',
joints_regressor_extra)
self.num_verts = self.get_num_verts()
self.num_joints = get_keypoint_num(convention=self.keypoint_dst)
self.body_part_segmentation = body_segmentation('smplx')
def forward(self,
*args,
return_verts: bool = True,
return_full_pose: bool = False,
**kwargs) -> dict:
"""Forward function.
Args:
*args: extra arguments for SMPL
return_verts: whether to return vertices
return_full_pose: whether to return full pose parameters
**kwargs: extra arguments for SMPL
Returns:
output: contains output parameters and attributes
"""
kwargs['get_skin'] = True
smplx_output = super(SMPLX, self).forward(*args, **kwargs)
if not hasattr(self, 'joints_regressor'):
joints = smplx_output.joints
else:
joints = vertices2joints(self.joints_regressor,
smplx_output.vertices)
if hasattr(self, 'joints_regressor_extra'):
extra_joints = vertices2joints(self.joints_regressor_extra,
smplx_output.vertices)
joints = torch.cat([joints, extra_joints], dim=1)
joints, joint_mask = convert_kps(joints,
src=self.keypoint_src,
dst=self.keypoint_dst,
approximate=self.keypoint_approximate)
if isinstance(joint_mask, np.ndarray):
joint_mask = torch.tensor(joint_mask,
dtype=torch.uint8,
device=joints.device)
batch_size = joints.shape[0]
joint_mask = joint_mask.reshape(1, -1).expand(batch_size, -1)
output = dict(global_orient=smplx_output.global_orient,
body_pose=smplx_output.body_pose,
joints=joints,
joint_mask=joint_mask,
keypoints=torch.cat([joints, joint_mask[:, :, None]],
dim=-1),
betas=smplx_output.betas)
if return_verts:
output['vertices'] = smplx_output.vertices
if return_full_pose:
output['full_pose'] = smplx_output.full_pose
return output
@classmethod
def tensor2dict(cls,
full_pose: torch.Tensor,
betas: Optional[torch.Tensor] = None,
transl: Optional[torch.Tensor] = None,
expression: Optional[torch.Tensor] = None) -> dict:
"""Convert full pose tensor to pose dict.
Args:
full_pose (torch.Tensor): shape should be (..., 165) or
(..., 55, 3). All zeros for T-pose.
betas (Optional[torch.Tensor], optional): shape should be
(..., 10). The batch num should be 1 or corresponds with
full_pose.
Defaults to None.
transl (Optional[torch.Tensor], optional): shape should be
(..., 3). The batch num should be 1 or corresponds with
full_pose.
Defaults to None.
expression (Optional[torch.Tensor], optional): shape should
be (..., 10). The batch num should be 1 or corresponds with
full_pose.
Defaults to None.
Returns:
dict: dict of smplx pose containing transl & betas.
"""
NUM_BODY_JOINTS = cls.NUM_BODY_JOINTS
NUM_HAND_JOINTS = cls.NUM_HAND_JOINTS
NUM_FACE_JOINTS = cls.NUM_FACE_JOINTS
NUM_JOINTS = NUM_BODY_JOINTS + 2 * NUM_HAND_JOINTS + NUM_FACE_JOINTS
full_pose = full_pose.view(-1, (NUM_JOINTS + 1), 3)
global_orient = full_pose[:, :1]
body_pose = full_pose[:, 1:NUM_BODY_JOINTS + 1]
jaw_pose = full_pose[:, NUM_BODY_JOINTS + 1:NUM_BODY_JOINTS + 2]
leye_pose = full_pose[:, NUM_BODY_JOINTS + 2:NUM_BODY_JOINTS + 3]
reye_pose = full_pose[:, NUM_BODY_JOINTS + 3:NUM_BODY_JOINTS + 4]
left_hand_pose = full_pose[:, NUM_BODY_JOINTS + 4:NUM_BODY_JOINTS + 19]
right_hand_pose = full_pose[:,
NUM_BODY_JOINTS + 19:NUM_BODY_JOINTS + 34]
batch_size = body_pose.shape[0]
if betas is not None:
# squeeze or unsqueeze betas to 2 dims
betas = betas.view(-1, betas.shape[-1])
if betas.shape[0] == 1:
betas = betas.repeat(batch_size, 1)
else:
betas = betas
transl = transl.view(batch_size, -1) if transl is not None else transl
expression = expression.view(
batch_size, -1) if expression is not None else torch.zeros(
batch_size, 10).to(body_pose.device)
return {
'betas':
betas,
'global_orient':
global_orient.view(batch_size, 3),
'body_pose':
body_pose.view(batch_size, NUM_BODY_JOINTS * 3),
'left_hand_pose':
left_hand_pose.view(batch_size, NUM_HAND_JOINTS * 3),
'right_hand_pose':
right_hand_pose.view(batch_size, NUM_HAND_JOINTS * 3),
'transl':
transl,
'expression':
expression,
'jaw_pose':
jaw_pose.view(batch_size, 3),
'leye_pose':
leye_pose.view(batch_size, 3),
'reye_pose':
reye_pose.view(batch_size, 3),
}
@classmethod
def dict2tensor(cls, smplx_dict: dict) -> torch.Tensor:
"""Convert smplx pose dict to full pose tensor.
Args:
smplx_dict (dict): smplx pose dict.
Returns:
torch: full pose tensor.
"""
assert cls.body_pose_keys.issubset(smplx_dict)
for k in smplx_dict:
if isinstance(smplx_dict[k], np.ndarray):
smplx_dict[k] = torch.Tensor(smplx_dict[k])
NUM_BODY_JOINTS = cls.NUM_BODY_JOINTS
NUM_HAND_JOINTS = cls.NUM_HAND_JOINTS
NUM_FACE_JOINTS = cls.NUM_FACE_JOINTS
NUM_JOINTS = NUM_BODY_JOINTS + 2 * NUM_HAND_JOINTS + NUM_FACE_JOINTS
global_orient = smplx_dict['global_orient'].reshape(-1, 1, 3)
body_pose = smplx_dict['body_pose'].reshape(-1, NUM_BODY_JOINTS, 3)
batch_size = global_orient.shape[0]
jaw_pose = smplx_dict.get('jaw_pose', torch.zeros((batch_size, 1, 3)))
leye_pose = smplx_dict.get('leye_pose', torch.zeros(
(batch_size, 1, 3)))
reye_pose = smplx_dict.get('reye_pose', torch.zeros(
(batch_size, 1, 3)))
left_hand_pose = smplx_dict.get(
'left_hand_pose', torch.zeros((batch_size, NUM_HAND_JOINTS, 3)))
right_hand_pose = smplx_dict.get(
'right_hand_pose', torch.zeros((batch_size, NUM_HAND_JOINTS, 3)))
full_pose = torch.cat([
global_orient, body_pose,
jaw_pose.reshape(-1, 1, 3),
leye_pose.reshape(-1, 1, 3),
reye_pose.reshape(-1, 1, 3),
left_hand_pose.reshape(-1, 15, 3),
right_hand_pose.reshape(-1, 15, 3)
],
dim=1).reshape(-1, (NUM_JOINTS + 1) * 3)
return full_pose
class SMPLXLayer(_SMPLXLayer):
"""Extension of the official SMPL-X implementation."""
body_pose_keys = {'global_orient', 'body_pose'}
full_pose_keys = {
'global_orient', 'body_pose', 'left_hand_pose', 'right_hand_pose',
'jaw_pose', 'leye_pose', 'reye_pose'
}
NUM_VERTS = 10475
NUM_FACES = 20908
def __init__(self,
*args,
keypoint_src: str = 'smplx',
keypoint_dst: str = 'human_data',
keypoint_approximate: bool = False,
joints_regressor: str = None,
extra_joints_regressor: str = None,
**kwargs):
"""
Args:
*args: extra arguments for SMPL initialization.
keypoint_src: source convention of keypoints. This convention
is used for keypoints obtained from joint regressors.
Keypoints then undergo conversion into keypoint_dst
convention.
keypoint_dst: destination convention of keypoints. This convention
is used for keypoints in the output.
keypoint_approximate: whether to use approximate matching in
convention conversion for keypoints.
joints_regressor: path to joint regressor. Should be a .npy
file. If provided, replaces the official J_regressor of SMPL.
extra_joints_regressor: path to extra joint regressor. Should be
a .npy file. If provided, extra joints are regressed and
concatenated after the joints regressed with the official
J_regressor or joints_regressor.
**kwargs: extra keyword arguments for SMPL initialization.
Returns:
None
"""
super(SMPLXLayer, self).__init__(*args, **kwargs)
# joints = [JOINT_MAP[i] for i in JOINT_NAMES]
self.keypoint_src = keypoint_src
self.keypoint_dst = keypoint_dst
self.keypoint_approximate = keypoint_approximate
# override the default SMPL joint regressor if available
if joints_regressor is not None:
joints_regressor = torch.tensor(np.load(joints_regressor),
dtype=torch.float)
self.register_buffer('joints_regressor', joints_regressor)
# allow for extra joints to be regressed if available
if extra_joints_regressor is not None:
joints_regressor_extra = torch.tensor(
np.load(extra_joints_regressor), dtype=torch.float)
self.register_buffer('joints_regressor_extra',
joints_regressor_extra)
self.num_verts = self.get_num_verts()
self.num_joints = get_keypoint_num(convention=self.keypoint_dst)
self.body_part_segmentation = body_segmentation('smplx')
def forward(self,
*args,
return_verts: bool = True,
return_full_pose: bool = False,
**kwargs) -> dict:
"""Forward function.
Args:
*args: extra arguments for SMPL
return_verts: whether to return vertices
return_full_pose: whether to return full pose parameters
**kwargs: extra arguments for SMPL
Returns:
output: contains output parameters and attributes
"""
kwargs['get_skin'] = True
smplx_output = super(SMPLXLayer, self).forward(*args, **kwargs)
if not hasattr(self, 'joints_regressor'):
joints = smplx_output.joints
else:
joints = vertices2joints(self.joints_regressor,
smplx_output.vertices)
if hasattr(self, 'joints_regressor_extra'):
extra_joints = vertices2joints(self.joints_regressor_extra,
smplx_output.vertices)
joints = torch.cat([joints, extra_joints], dim=1)
joints, joint_mask = convert_kps(joints,
src=self.keypoint_src,
dst=self.keypoint_dst,
approximate=self.keypoint_approximate)
if isinstance(joint_mask, np.ndarray):
joint_mask = torch.tensor(joint_mask,
dtype=torch.uint8,
device=joints.device)
batch_size = joints.shape[0]
joint_mask = joint_mask.reshape(1, -1).expand(batch_size, -1)
output = dict(global_orient=smplx_output.global_orient,
body_pose=smplx_output.body_pose,
joints=joints,
joint_mask=joint_mask,
keypoints=torch.cat([joints, joint_mask[:, :, None]],
dim=-1),
betas=smplx_output.betas)
if return_verts:
output['vertices'] = smplx_output.vertices
if return_full_pose:
output['full_pose'] = smplx_output.full_pose
return output
|