Spaces:
Sleeping
Sleeping
File size: 22,981 Bytes
d7e58f0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 |
import json
import warnings
from enum import Enum
from typing import Any, List, Tuple, Union
import numpy as np
import torch
from detrsmpl.core.cameras.cameras import PerspectiveCameras
from detrsmpl.core.conventions.cameras.convert_convention import (
convert_camera_matrix,
convert_K_3x3_to_4x4,
convert_K_4x4_to_3x3,
)
from .builder import build_cameras
_CAMERA_PARAMETER_SUPPORTED_KEYS_ = {
'H': {
'type': int,
},
'W': {
'type': int,
},
'in_mat': {
'type': list,
'len': 3,
},
'rotation_mat': {
'type': list,
'len': 3,
},
'translation': {
'type': list,
'len': 3,
},
'k1': {
'type': float,
},
'k2': {
'type': float,
},
'k3': {
'type': float,
},
'k4': {
'type': float,
},
'k5': {
'type': float,
},
'k6': {
'type': float,
},
'p1': {
'type': float,
},
'p2': {
'type': float,
},
}
class _TypeValidation(Enum):
MATCH = 0
ARRAY = 1
FAIL = 2
class CameraParameter:
logger = None
SUPPORTED_KEYS = _CAMERA_PARAMETER_SUPPORTED_KEYS_
def __init__(self,
name: str = 'default',
H: int = 1080,
W: int = 1920) -> None:
"""
Args:
name (str, optional):
Name of this camera. Defaults to "default".
H (int, optional):
Height of a frame, in pixel. Defaults to 1080.
W (int, optional):
Width of a frame, in pixel. Defaults to 1920.
"""
self.name = name
self.parameters_dict = {}
in_mat = __zero_mat_list__(3)
self.parameters_dict['in_mat'] = in_mat
for distort_name in __distort_coefficient_names__:
self.parameters_dict[distort_name] = 0.0
_, H = self.validate_item('H', H)
self.parameters_dict['H'] = H
_, W = self.validate_item('W', W)
self.parameters_dict['W'] = W
r_mat = __zero_mat_list__(3)
self.parameters_dict['rotation_mat'] = r_mat
t_list = [0.0, 0.0, 0.0]
self.parameters_dict['translation'] = t_list
def reset_distort(self) -> None:
"""Reset all distort coefficients to zero."""
for distort_name in __distort_coefficient_names__:
self.parameters_dict[distort_name] = 0.0
def get_opencv_distort_mat(self) -> np.ndarray:
"""Get a numpy array of 8 distort coefficients, which is the distCoeffs
arg of cv2.undistort.
Returns:
ndarray:
(k_1, k_2, p_1, p_2, k_3, k_4, k_5, k_6) of 8 elements.
"""
dist_coeffs = [
self.get_value('k1'),
self.get_value('k2'),
self.get_value('p1'),
self.get_value('p2'),
self.get_value('k3'),
self.get_value('k4'),
self.get_value('k5'),
self.get_value('k6'),
]
dist_coeffs = np.array(dist_coeffs)
return dist_coeffs
def set_KRT(self,
K_mat: np.ndarray,
R_mat: np.ndarray,
T_vec: np.ndarray,
inverse_extrinsic: bool = False) -> None:
"""Set intrinsic and extrinsic of a camera.
Args:
K_mat (np.ndarray):
In shape [3, 3].
R_mat (np.ndarray):
Rotation from world to view in default.
In shape [3, 3].
T_vec (np.ndarray):
Translation from world to view in default.
In shape [3,].
inverse_extrinsic (bool, optional):
If true, R_mat and T_vec transform a point
from view to world. Defaults to False.
"""
k_shape = K_mat.shape
assert k_shape[0] == k_shape[1] == 3
r_shape = R_mat.shape
assert r_shape[0] == r_shape[1] == 3
assert T_vec.ndim == 1 and T_vec.shape[0] == 3
self.set_mat_np('in_mat', K_mat)
if inverse_extrinsic:
R_mat = np.linalg.inv(R_mat)
T_vec = -np.dot(R_mat, T_vec).reshape((3))
self.set_mat_np('rotation_mat', R_mat)
self.set_value('translation', T_vec.tolist())
def get_KRT(self, k_dim=3) -> List[np.ndarray]:
"""Get intrinsic and extrinsic of a camera.
Args:
k_dim (int, optional):
Dimension of the returned mat K.
Defaults to 3.
Raises:
ValueError: k_dim is neither 3 nor 4.
Returns:
List[np.ndarray]:
K_mat (np.ndarray):
In shape [3, 3].
R_mat (np.ndarray):
Rotation from world to view in default.
In shape [3, 3].
T_vec (np.ndarray):
Translation from world to view in default.
In shape [3,].
"""
K_3x3 = self.get_mat_np('in_mat')
R_mat = self.get_mat_np('rotation_mat')
T_vec = np.asarray(self.get_value('translation'))
if k_dim == 3:
return [K_3x3, R_mat, T_vec]
elif k_dim == 4:
K_3x3 = np.expand_dims(K_3x3, 0) # shape (1, 3, 3)
K_4x4 = convert_K_3x3_to_4x4(
K=K_3x3, is_perspective=True) # shape (1, 4, 4)
K_4x4 = K_4x4[0, :, :]
return [K_4x4, R_mat, T_vec]
else:
raise ValueError(f'K mat cannot be converted to {k_dim}x{k_dim}')
def set_mat_np(self, mat_key: str, mat_numpy: np.ndarray) -> None:
"""Set a matrix-type parameter to mat_numpy.
Args:
mat_key (str):
Key of the target matrix. in_mat or rotation_mat.
mat_numpy (ndarray):
Matrix in numpy format.
Raises:
TypeError:
mat_numpy is not an np.ndarray.
"""
if not isinstance(mat_numpy, np.ndarray):
raise TypeError
self.set_mat_list(mat_key, mat_numpy.tolist())
def set_mat_list(self, mat_key: str, mat_list: List[list]) -> None:
"""Set a matrix-type parameter to mat_list.
Args:
mat_key (str):
Key of the target matrix. in_mat or rotation_mat.
mat_list (List[list]):
Matrix in list format.
"""
_, mat_list = self.validate_item(mat_key, mat_list)
self.parameters_dict[mat_key] = mat_list
def set_value(self, key: str, value: Any) -> None:
"""Set a parameter to value.
Args:
key (str):
Name of the parameter.
value (object):
New value of the parameter.
"""
_, value = self.validate_item(key, value)
self.parameters_dict[key] = value
def get_value(self, key: str) -> Any:
"""Get a parameter by key.
Args:
key (str):
Name of the parameter.
Raises:
KeyError: key not in self.parameters_dict
Returns:
object:
Value of the parameter.
"""
if key not in self.parameters_dict:
raise KeyError(key)
else:
return self.parameters_dict[key]
def get_mat_np(self, key: str) -> np.ndarray:
"""Get a a matrix-type parameter by key.
Args:
key (str):
Name of the parameter.
Raises:
KeyError: key not in self.parameters_dict
Returns:
ndarray:
Value of the parameter.
"""
if key not in self.parameters_dict:
raise KeyError(key)
else:
mat_list = self.parameters_dict[key]
mat_np = np.array(mat_list).reshape((3, 3))
return mat_np
def to_string(self) -> str:
"""Convert self.to_dict() to a string.
Returns:
str:
A dict in json string format.
"""
dump_dict = self.to_dict()
ret_str = json.dumps(dump_dict)
return ret_str
def to_dict(self) -> dict:
"""Dump camera name and parameters to dict.
Returns:
dict:
Put self.name and self.parameters_dict
in one dict.
"""
dump_dict = self.parameters_dict.copy()
dump_dict['name'] = self.name
return dump_dict
def dump(self, json_path: str) -> None:
"""Dump camera name and parameters to a file.
Returns:
dict:
Put self.name and self.parameters_dict
in one dict, and dump them to a json file.
"""
dump_dict = self.to_dict()
with open(json_path, 'w') as f_write:
json.dump(dump_dict, f_write)
def load(self, json_path: str) -> None:
"""Load camera name and parameters from a file."""
with open(json_path, 'r') as f_read:
dumped_dict = json.load(f_read)
self.load_from_dict(dumped_dict)
def load_from_dict(self, json_dict: dict) -> None:
"""Load name and parameters from a dict.
Args:
json_dict (dict):
A dict comes from self.to_dict().
"""
for key in json_dict.keys():
if key == 'name':
self.name = json_dict[key]
elif key == 'rotation':
self.parameters_dict['rotation_mat'] = np.array(
json_dict[key]).reshape(3, 3).tolist()
elif key == 'translation':
self.parameters_dict[key] = np.array(json_dict[key]).reshape(
(3)).tolist()
else:
self.parameters_dict[key] = json_dict[key]
if '_mat' in key:
self.parameters_dict[key] = np.array(
self.parameters_dict[key]).reshape(3, 3).tolist()
def load_from_chessboard(self,
chessboard_dict: dict,
name: str,
inverse: bool = True) -> None:
"""Load name and parameters from a dict.
Args:
chessboard_dict (dict):
A dict loaded from json.load(chessboard_file).
name (str):
Name of this camera.
inverse (bool, optional):
Whether to inverse rotation and translation mat.
Defaults to False.
"""
camera_param_dict = \
__parse_chessboard_param__(chessboard_dict, name, inverse=inverse)
self.load_from_dict(camera_param_dict)
def load_kinect_from_smc(self, smc_reader, kinect_id: int) -> None:
"""Load name and parameters of a kinect from an SmcReader instance.
Args:
smc_reader (mmhuman3d.data.data_structures.smc_reader.SMCReader):
An SmcReader instance containing kinect camera parameters.
kinect_id (int):
Id of the target kinect.
"""
name = kinect_id
extrinsics_dict = \
smc_reader.get_kinect_color_extrinsics(
kinect_id, homogeneous=False
)
rot_np = extrinsics_dict['R']
trans_np = extrinsics_dict['T']
intrinsics_np = \
smc_reader.get_kinect_color_intrinsics(
kinect_id
)
resolution = \
smc_reader.get_kinect_color_resolution(
kinect_id
)
rmatrix = np.linalg.inv(rot_np).reshape(3, 3)
tvec = -np.dot(rmatrix, trans_np)
self.name = name
self.set_mat_np('in_mat', intrinsics_np)
self.set_mat_np('rotation_mat', rmatrix)
self.set_value('translation', tvec.tolist())
self.set_value('H', resolution[1])
self.set_value('W', resolution[0])
def load_iphone_from_smc(self,
smc_reader,
iphone_id: int = 0,
frame_id: int = 0) -> None:
"""Load name and parameters of an iPhone from an SmcReader instance.
Args:
smc_reader (mmhuman3d.data.data_structures.smc_reader.SMCReader):
An SmcReader instance containing kinect camera parameters.
iphone_id (int):
Id of the target iphone.
Defaults to 0.
frame_id (int):
Frame ID of one selected frame.
It only influences the intrinsics.
Defaults to 0.
"""
name = f'iPhone_{iphone_id}'
extrinsics_mat = \
smc_reader.get_iphone_extrinsics(
iphone_id, homogeneous=True
)
rot_np = extrinsics_mat[:3, :3]
trans_np = extrinsics_mat[:3, 3]
intrinsics_np = \
smc_reader.get_iphone_intrinsics(
iphone_id, frame_id
)
resolution = \
smc_reader.get_iphone_color_resolution(
iphone_id
)
rmatrix = np.linalg.inv(rot_np).reshape(3, 3)
tvec = -np.dot(rmatrix, trans_np)
self.name = name
self.set_mat_np('in_mat', intrinsics_np)
self.set_mat_np('rotation_mat', rmatrix)
self.set_value('translation', tvec.tolist())
self.set_value('H', resolution[1])
self.set_value('W', resolution[0])
@classmethod
def load_from_perspective_cameras(cls,
cam,
name: str,
resolution: Union[List, Tuple] = None):
"""Load parameters from a PerspectiveCameras and return a
CameraParameter.
Args:
cam (mmhuman3d.core.cameras.cameras.PerspectiveCameras):
An instance.
name (str):
Name of this camera.
"""
assert isinstance(cam, PerspectiveCameras
), 'Wrong input, support PerspectiveCameras only!'
if len(cam) > 1:
warnings.warn('Will only use the first camera in the batch.')
cam = cam[0]
resolution = resolution if resolution is not None else cam.resolution[
0].tolist()
height, width = int(resolution[0]), int(resolution[1])
cam_param = CameraParameter()
cam_param.__init__(H=height, W=width, name=name)
k_4x4 = cam.K # shape (1, 4, 4)
r_3x3 = cam.R # shape (1, 3, 3)
t_3 = cam.T # shape (1, 3)
is_perspective = cam.is_perspective()
in_ndc = cam.in_ndc()
k_4x4, r_3x3, t_3 = convert_camera_matrix(K=k_4x4,
R=r_3x3,
T=t_3,
is_perspective=False,
in_ndc_dst=False,
in_ndc_src=in_ndc,
convention_src='pytorch3d',
convention_dst='opencv',
resolution_src=(height,
width),
resolution_dst=(height,
width))
k_3x3 = \
convert_K_4x4_to_3x3(k_4x4, is_perspective=is_perspective)
k_3x3 = k_3x3.numpy()[0]
r_3x3 = r_3x3.numpy()[0]
t_3 = t_3.numpy()[0]
cam_param.name = name
cam_param.set_mat_np('in_mat', k_3x3)
cam_param.set_mat_np('rotation_mat', r_3x3)
cam_param.set_value('translation', t_3.tolist())
cam_param.parameters_dict.update(H=height)
cam_param.parameters_dict.update(W=width)
return cam_param
def export_to_perspective_cameras(self) -> PerspectiveCameras:
"""Export to a opencv defined screen space PerspectiveCameras.
Returns:
Same defined PerspectiveCameras of batch_size 1.
"""
height = self.parameters_dict['H']
width = self.parameters_dict['W']
k_4x4, rotation, translation = self.get_KRT(k_dim=4)
k_4x4 = np.expand_dims(k_4x4, 0) # shape (1, 3, 3)
rotation = np.expand_dims(rotation, 0) # shape (1, 3, 3)
translation = np.expand_dims(translation, 0) # shape (1, 3)
new_K = torch.from_numpy(k_4x4)
new_R = torch.from_numpy(rotation)
new_T = torch.from_numpy(translation)
cam = build_cameras(
dict(type='PerspectiveCameras',
K=new_K.float(),
R=new_R.float(),
T=new_T.float(),
convention='opencv',
in_ndc=False,
resolution=(height, width)))
return cam
def validate_item(self, key: Any, val: Any) -> List:
"""Check whether the key and its value matches definition in
CameraParameter.SUPPORTED_KEYS.
Args:
key (Any):
Key in CameraParameter.
val (Any):
Value to the key.
Raises:
KeyError:
key cannot be found in
CameraParameter.SUPPORTED_KEYS.
TypeError:
Value's type doesn't match definition.
Returns:
key (Any): The input key.
val (Any): The value casted into correct format.
"""
self.__check_key__(key)
formatted_val = self.__validate_value_type__(key, val)
return key, formatted_val
def __check_key__(self, key: Any) -> None:
"""Check whether the key matches definition in
CameraParameter.SUPPORTED_KEYS.
Args:
key (Any):
Key in CameraParameter.
Raises:
KeyError:
key cannot be found in
CameraParameter.SUPPORTED_KEYS.
"""
if key not in self.__class__.SUPPORTED_KEYS:
err_msg = 'Key check failed in CameraParameter:\n'
err_msg += f'key={str(key)}\n'
raise KeyError(err_msg)
def __validate_value_type__(self, key: Any, val: Any) -> Any:
"""Check whether the type of value matches definition in
CameraParameter.SUPPORTED_KEYS.
Args:
key (Any):
Key in CameraParameter.
val (Any):
Value to the key.
Raises:
TypeError:
Value is supported but doesn't match definition.
Returns:
val (Any): The value casted into correct format.
"""
np_type_mapping = {int: np.integer, float: np.floating}
supported_keys = self.__class__.SUPPORTED_KEYS
validation_result = _TypeValidation.FAIL
ret_val = None
if supported_keys[key]['type'] == int or\
supported_keys[key]['type'] == float:
type_str = str(type(val))
class_name = type_str.split('\'')[1]
if type(val) == self.__class__.SUPPORTED_KEYS[key]['type']:
validation_result = _TypeValidation.MATCH
ret_val = val
elif class_name.startswith('numpy'):
# a value is required, not array
if np.issubdtype(type(val),
np_type_mapping[supported_keys[key]['type']]):
validation_result = _TypeValidation.MATCH
ret_val = val.astype(supported_keys[key]['type'])
elif np.issubdtype(type(val), np.ndarray):
validation_result = _TypeValidation.ARRAY
elif class_name.startswith('torch'):
# only one element tensors
# can be converted to Python scalars
if len(val.size()) == 0:
val_item = val.item()
if type(val_item) == supported_keys[key]['type']:
validation_result = _TypeValidation.MATCH
ret_val = val_item
else:
validation_result = _TypeValidation.ARRAY
else:
if type(val) == self.__class__.SUPPORTED_KEYS[key]['type']:
validation_result = _TypeValidation.MATCH
ret_val = val
if validation_result != _TypeValidation.MATCH:
err_msg = 'Type check failed in CameraParameter:\n'
err_msg += f'key={str(key)}\n'
err_msg += f'type(val)={type(val)}\n'
if validation_result == _TypeValidation.ARRAY:
err_msg += 'A single value is expected, ' +\
'neither an array nor a slice.\n'
raise TypeError(err_msg)
return ret_val
def __parse_chessboard_param__(chessboard_camera_param, name, inverse=True):
"""Parse a dict loaded from chessboard file into another dict needed by
CameraParameter.
Args:
chessboard_camera_param (dict):
A dict loaded from json.load(chessboard_file).
name (str):
Name of this camera.
inverse (bool, optional):
Whether to inverse rotation and translation mat.
Defaults to True.
Returns:
dict:
A dict of parameters in CameraParameter.to_dict() format.
"""
camera_param_dict = {}
camera_param_dict['H'] = chessboard_camera_param['imgSize'][1]
camera_param_dict['W'] = chessboard_camera_param['imgSize'][0]
camera_param_dict['in_mat'] = chessboard_camera_param['K']
camera_param_dict['k1'] = 0
camera_param_dict['k2'] = 0
camera_param_dict['k3'] = 0
camera_param_dict['k4'] = 0
camera_param_dict['k5'] = 0
camera_param_dict['p1'] = 0
camera_param_dict['p2'] = 0
camera_param_dict['name'] = name
camera_param_dict['rotation'] = chessboard_camera_param['R']
camera_param_dict['translation'] = chessboard_camera_param['T']
if inverse:
rmatrix = np.linalg.inv(
np.array(camera_param_dict['rotation']).reshape(3, 3))
camera_param_dict['rotation'] = rmatrix.tolist()
tmatrix = np.array(camera_param_dict['translation']).reshape((3, 1))
tvec = -np.dot(rmatrix, tmatrix)
camera_param_dict['translation'] = tvec.reshape((3)).tolist()
return camera_param_dict
__distort_coefficient_names__ = [
'k1', 'k2', 'k3', 'k4', 'k5', 'k6', 'p1', 'p2'
]
def __zero_mat_list__(n=3):
"""Return a zero mat in list format.
Args:
n (int, optional):
Length of the edge.
Defaults to 3.
Returns:
list:
List[List[int]]
"""
ret_list = [[0] * n for _ in range(n)]
return ret_list
|