File size: 13,005 Bytes
d7e58f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
import os
import os.path as osp
from glob import glob
import numpy as np
from config.config import cfg
import copy
import json
import pickle
import cv2
import torch
from pycocotools.coco import COCO
from util.human_models import smpl_x
from util.preprocessing import load_img, sanitize_bbox, process_bbox,augmentation_keep_size, load_ply, load_obj
from util.transforms import rigid_align, rigid_align_batch
import tqdm
import random
from util.formatting import DefaultFormatBundle
from detrsmpl.data.datasets.pipelines.transforms import Normalize
from humandata import HumanDataset
from detrsmpl.utils.demo_utils import xywh2xyxy, xyxy2xywh, box2cs
from detrsmpl.core.conventions.keypoints_mapping import convert_kps
import mmcv
import cv2
import numpy as np
from detrsmpl.core.visualization.visualize_keypoints2d import visualize_kp2d
from detrsmpl.core.visualization.visualize_smpl import visualize_smpl_hmr,render_smpl
from detrsmpl.models.body_models.builder import build_body_model
from detrsmpl.core.visualization.visualize_keypoints3d import visualize_kp3d
from detrsmpl.data.data_structures.multi_human_data import MultiHumanData
from detrsmpl.utils.ffmpeg_utils import video_to_images
from mmcv.runner import get_dist_info
from config.config import cfg
import torch.distributed as dist
import shutil

class INFERENCE(torch.utils.data.Dataset):
    def __init__(self, img_dir=None,out_path=None):
        
        self.output_path = out_path

        self.img_dir = img_dir

        self.is_vid = False
        
        # can you change isfile to decide if it is mp4
        rank, _ = get_dist_info()
        if self.img_dir.endswith('.mp4'):
            self.is_vid = True
            img_name = self.img_dir.split('/')[-1][:-4]
            # self.img_dir = self.img_dir[:-4]
        else:
            img_name = self.img_dir.split('/')[-1]
        self.img_name = img_name+'_out'
        self.output_path = os.path.join(self.output_path,self.img_name)
        os.makedirs(self.output_path, exist_ok=True)
        self.tmp_dir = os.path.join(self.output_path, 'temp_img')
        os.makedirs(self.tmp_dir, exist_ok=True)
        self.result_img_dir = os.path.join(self.output_path, 'res_img')
        
        
        if not self.is_vid:
            if rank == 0:
                image_files = sorted(glob(self.img_dir + '/*.jpg') + glob(self.img_dir + '/*.png'))
                for i, image_file in enumerate(image_files):
                    new_name = os.path.join(self.tmp_dir, '%06d.png'%i)
                    shutil.copy(image_file, new_name)
            dist.barrier()
        else:
            if rank == 0:
                video_to_images(self.img_dir, self.tmp_dir)
            dist.barrier()
        self.img_paths = sorted(glob(self.tmp_dir+'/*',recursive=True)) 
        self.score_threshold = 0.2
        self.resolution = [720 ,1280] # AGORA test
        # self.resolution = [1200, 1600] # EHF
        # self.img_paths = sorted(glob(self.img_dir,recursive=True))        
        self.format = DefaultFormatBundle()
        self.normalize = Normalize(mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375])
       
    def __len__(self):
        return len(self.img_paths)

    def __getitem__(self, idx):
        
        img = load_img(self.img_paths[idx],'BGR')
        img_whole_bbox = np.array([0, 0, img.shape[1],img.shape[0]])
        img, img2bb_trans, bb2img_trans, _, _ = \
            augmentation_keep_size(img, img_whole_bbox, 'test')

        cropped_img_shape=img.shape[:2]
        img = (img.astype(np.float32)) 
        
        inputs = {'img': img}
        targets = {
            'body_bbox_center': np.array(img_whole_bbox[None]),
            'body_bbox_size': np.array(img_whole_bbox[None])}
        meta_info = {
            'ori_shape':np.array(self.resolution),
            'img_shape': np.array(img.shape[:2]),
            'img2bb_trans': img2bb_trans,
            'bb2img_trans': bb2img_trans,
            'ann_idx': idx}
        result = {**inputs, **targets, **meta_info}
        
        result = self.normalize(result)
        result = self.format(result)
            
        return result
        
    def inference(self, outs):
        img_paths = self.img_paths
        sample_num = len(outs)
        output = {}
        
        for out in outs:
            ann_idx = out['image_idx']
            img_cropped = mmcv.imdenormalize(
                img=(out['img'].cpu().numpy()).transpose(1, 2, 0), 
                mean=np.array([123.675, 116.28, 103.53]), 
                std=np.array([58.395, 57.12, 57.375]),
                to_bgr=True).astype(np.uint8)
            # bb2img_trans = out['bb2img_trans']
            # img2bb_trans = out['img2bb_trans']
            scores = out['scores'].clone().cpu().numpy()
            img_shape = out['img_shape'].cpu().numpy()[::-1] # w, h
            width,height = img_shape
            width += width % 2
            height += height % 2
            img_shape = np.array([width, height])
            img = cv2.imread(img_paths[ann_idx]) # h, w

                
            joint_proj = out['smplx_joint_proj'].clone().cpu().numpy()
            joint_vis = out['smplx_joint_proj'].clone().cpu().numpy()
            joint_coco = out['keypoints_coco'].clone().cpu().numpy()
            joint_coco_raw = joint_coco.copy()
            smpl_kp3d_coco, _ = convert_kps(out['smpl_kp3d'].clone().cpu().numpy(),src='smplx',dst='coco', approximate=True)
            
            
            
            body_bbox = out['body_bbox'].clone().cpu().numpy()
            lhand_bbox = out['lhand_bbox'].clone().cpu().numpy()
            rhand_bbox = out['rhand_bbox'].clone().cpu().numpy()
            face_bbox = out['face_bbox'].clone().cpu().numpy()

            if self.resolution == [720, 1280]:
                joint_proj[:, :, 0] = joint_proj[:, :, 0] / img_shape[0] * 3840
                joint_proj[:, :, 1] = joint_proj[:, :, 1] / img_shape[1] * 2160
                joint_vis[:, :, 0] = joint_vis[:, :, 0] / img_shape[0] * img.shape[1]
                joint_vis[:, :, 1] = joint_vis[:, :, 1]/ img_shape[1] * img.shape[0]        
                
                joint_coco[:, :, 0] = joint_coco[:, :, 0] / img_shape[0] * img.shape[1]
                joint_coco[:, :, 1] = joint_coco[:, :, 1]/ img_shape[1] * img.shape[0] 
                scale = np.array([
                    img.shape[1]/img_shape[0],
                    img.shape[1]/img_shape[0], 
                    img.shape[1]/img_shape[0], 
                    img.shape[1]/img_shape[0], 
                    ])
                body_bbox_raw = body_bbox.copy()
                body_bbox = body_bbox * scale
                lhand_bbox = lhand_bbox * scale
                rhand_bbox = rhand_bbox * scale
                face_bbox = face_bbox * scale
            elif self.resolution == [1200, 1600]:
                
                joint_proj[:, :, 0] = joint_proj[:, :, 0] * (1200 / 800)
                joint_proj[:, :, 1] = joint_proj[:, :, 1] * (1600 / 1066)

                joint_vis[:, :, 0] = joint_vis[:, :, 0] * (1200 / 800)
                joint_vis[:, :, 1] = joint_vis[:, :, 1] * (1600 / 1066)             
                
                scale = np.array([1600/1066, 1200/800, 1600/1066, 1200/800])[None]
                body_bbox = body_bbox * scale
                lhand_bbox = lhand_bbox * scale
                rhand_bbox = rhand_bbox * scale
                face_bbox = face_bbox * scale
                
            for i, score in enumerate(scores):
                if score < self.score_threshold:
                    break

                save_name = img_paths[ann_idx].split('/')[-1][:-4] # if not crop should be -4
                if self.resolution == (2160, 3840):
                    save_name = save_name.split('_ann_id')[0]
                else:
                    save_name = save_name.split('_1280x720')[0] 


                
                save_dict = {
                    'params': {
                        'transl': out['cam_trans'][i].reshape(1, -1).cpu().numpy(),
                        'global_orient': out['smplx_root_pose'][i].reshape(1, -1).cpu().numpy(),
                        'body_pose': out['smplx_body_pose'][i].reshape(1, -1).cpu().numpy(),
                        'left_hand_pose': out['smplx_lhand_pose'][i].reshape(1, -1).cpu().numpy(),
                        'right_hand_pose': out['smplx_rhand_pose'][i].reshape(1, -1).cpu().numpy(),
                        'reye_pose': np.zeros((1, 3)),
                        'leye_pose': np.zeros((1, 3)),
                        'jaw_pose': out['smplx_jaw_pose'][i].reshape(1, -1).cpu().numpy(),
                        'expression': out['smplx_expr'][i].reshape(1, -1).cpu().numpy(),
                        'betas': out['smplx_shape'][i].reshape(1, -1).cpu().numpy()},
                    
                    'joints': joint_proj[i].reshape(1, -1, 2)[0,:24]}
                
                # save
                exist_result_path = glob(osp.join(self.output_path, 'predictions', save_name + '*'))
                if len(exist_result_path) == 0:
                    person_idx = 0
                else:
                    last_person_idx = max([
                        int(name.split('personId_')[1].split('.pkl')[0])
                        for name in exist_result_path
                    ])
                    person_idx = last_person_idx + 1

                save_name += '_personId_' + str(person_idx) + '.pkl'
                os.makedirs(osp.join(self.output_path, 'predictions'), exist_ok=True)
                with open(osp.join(self.output_path, 'predictions', save_name),'wb') as f:
                    pickle.dump(save_dict, f)
            # mesh
            # bbox

            
            if i == 0:
                save_name = img_paths[ann_idx].split('/')[-1][:-4]
                cv2.imwrite(os.path.join(self.result_img_dir,img_paths[ann_idx].split('/')[-1]), img)
            else:
                # dump bbox
                body_xywh = xyxy2xywh(body_bbox[:i])
                score = scores[:i]
                out_value = [{'bbox': b, 'score': s} for b, s in zip(body_xywh, score)]
                out_key = img_paths[ann_idx].split('/')[-1]
                output.update({out_key: out_value})
                
                # show bbox 
                img = mmcv.imshow_bboxes(img, body_bbox[:i], show=False, colors='green')
                img = mmcv.imshow_bboxes(img, lhand_bbox[:i], show=False, colors='blue')
                img = mmcv.imshow_bboxes(img, rhand_bbox[:i], show=False, colors='yellow')
                img = mmcv.imshow_bboxes(img, face_bbox[:i], show=False, colors='red')
                
                verts = out['smpl_verts'][:i] + out['cam_trans'][:i][:, None]
                body_model_cfg = dict(
                    type='smplx',
                    keypoint_src='smplx',
                    num_expression_coeffs=10,
                    num_betas=10,
                    gender='neutral',
                    keypoint_dst='smplx_137',
                    model_path='data/body_models/smplx',
                    use_pca=False,
                    use_face_contour=True)
                body_model = build_body_model(body_model_cfg).to('cuda')
                # for n, v in enumerate(verts):
                #     save_obj(
                #         osp.join(self.out_path, 'vis', img_paths[ann_idx].split('/')[-1].rjust(5+4,'0')).replace('.jpg',f'_{n}_.obj'),
                #         verts = v,
                #         faces=torch.tensor(body_model.faces.astype(np.int32))
                #     )
                # print(osp.join(self.out_path, 'vis', img_paths[ann_idx].split('/')[-1]))
                
                render_smpl(
                    verts=verts[None],
                    body_model=body_model,
                    # K= np.array(
                    #     [[img_shape[0]/2, 0, img_shape[0]/2],
                    #      [0, img_shape[0]/2, img_shape[1]/2],
                    #      [0, 0, 1]]),
                    K= np.array(
                        [[5000, 0, img_shape[0]/2],
                         [0, 5000, img_shape[1]/2],
                         [0, 0, 1]]),
                    R=None,
                    T=None,
                    # output_path=osp.join(self.out_path, 'vis', img_paths[ann_idx].split('/')[-1].rjust(5+4,'0')),
                    output_path=os.path.join(self.result_img_dir,img_paths[ann_idx].split('/')[-1]),
                    image_array=cv2.resize(img, (img_shape[0],img_shape[1]), cv2.INTER_CUBIC),
                    in_ndc=False,
                    alpha=0.9,
                    convention='opencv',
                    projection='perspective',
                    overwrite=True,
                    no_grad=True,
                    device='cuda',
                    resolution=[img_shape[0],img_shape[1]],
                    render_choice='hq',    
                )
        return output