Spaces:
Sleeping
Sleeping
File size: 13,214 Bytes
d7e58f0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 |
import os
import os.path as osp
from glob import glob
import numpy as np
from config.config import cfg
import copy
import json
import cv2
import torch
from pycocotools.coco import COCO
from util.human_models import smpl_x
from util.preprocessing import load_img, process_bbox, load_ply
from util.transforms import rigid_align, rigid_align_batch
from humandata import HumanDataset
import csv
class EHF(HumanDataset):
def __init__(self, transform, data_split):
super(EHF, self).__init__(transform, data_split)
self.transform = transform
self.data_split = data_split
self.save_idx = 0
# self.cam_param = {'R': [-2.98747896, 0.01172457, -0.05704687]}
# self.cam_param['R'], _ = cv2.Rodrigues(np.array(self.cam_param['R']))
self.cam_param = {}
self.img_dir = 'data/data_weichen/ehf'
self.img_shape = [1200, 1600]
self.annot_path = 'data_tmp/multihuman_data/ehf_val_230908_100.npz'
self.annot_path_cache = 'data_tmp/cache/ehf_val_cache_230908_100.npz'
if self.use_cache and osp.isfile(self.annot_path_cache):
print(f'[{self.__class__.__name__}] loading cache from {self.annot_path_cache}')
self.datalist = self.load_cache(self.annot_path_cache)
else:
if self.use_cache:
print(f'[{self.__class__.__name__}] Cache not found, generating cache...')
self.datalist = self.load_data(
train_sample_interval=getattr(cfg, f'{self.__class__.__name__}_train_sample_interval', 1))
if self.use_cache:
self.save_cache(self.annot_path_cache, self.datalist)
def evaluate(self, outs, cur_sample_idx):
annots = self.datalist
sample_num = len(outs)
eval_result = {
'pa_mpvpe_all': [],
'pa_mpvpe_l_hand': [],
'pa_mpvpe_r_hand': [],
'pa_mpvpe_hand': [],
'pa_mpvpe_face': [],
'mpvpe_all': [],
'mpvpe_l_hand': [],
'mpvpe_r_hand': [],
'mpvpe_hand': [],
'mpvpe_face': [],
'pa_mpjpe_body': [],
'pa_mpjpe_l_hand': [],
'pa_mpjpe_r_hand': [],
'pa_mpjpe_hand': []
}
csv_file = f'{cfg.result_dir}/ehf_smplx_error.csv'
file = open(csv_file, 'a', newline='')
for n in range(sample_num):
annot = annots[cur_sample_idx + n]
ann_id = annot['img_path'].split('/')[-1].split('_')[0]
out = outs[n]
ann_idx = out['gt_ann_idx']
img_path = []
for ann_id in ann_idx:
img_path.append(annots[ann_id]['img_path'])
eval_result['img_path'] = img_path
eval_result['ann_idx'] = ann_idx
# MPVPE from all vertices np.dot(self.cam_param['R'], out['smplx_mesh_cam_target'].transpose(0,2,1)).transpose(1,2,0)
# mesh_gt = np.dot(
# self.cam_param['R'],
# out['smplx_mesh_cam_target'].transpose(0,2,1)
# ).transpose(1,2,0)
mesh_gt = out['smplx_mesh_cam_target']
mesh_out = out['smplx_mesh_cam']
# mesh_gt_align = rigid_align(mesh_gt, mesh_out)
# print(mesh_out.shape)
mesh_out_align = rigid_align_batch(mesh_out, mesh_gt)
eval_result['pa_mpvpe_all'].append(
np.sqrt(np.sum(
(mesh_out_align - mesh_gt)**2, -1)).mean() * 1000)
mesh_out_align = mesh_out - np.dot(
smpl_x.J_regressor,
mesh_out).transpose(1,0,2)[:, smpl_x.J_regressor_idx['pelvis'], None, :] + np.dot(
smpl_x.J_regressor,
mesh_gt).transpose(1,0,2)[:, smpl_x.J_regressor_idx['pelvis'], None, :]
eval_result['mpvpe_all'].append(
np.sqrt(np.sum(
(mesh_out_align - mesh_gt)**2, -1)).mean() * 1000)
# MPVPE from hand vertices
mesh_gt_lhand = mesh_gt[:, smpl_x.hand_vertex_idx['left_hand'], :]
mesh_out_lhand = mesh_out[:, smpl_x.hand_vertex_idx['left_hand'], :]
mesh_out_lhand_align = rigid_align_batch(mesh_out_lhand, mesh_gt_lhand)
mesh_gt_rhand = mesh_gt[:, smpl_x.hand_vertex_idx['right_hand'], :]
mesh_out_rhand = mesh_out[:, smpl_x.hand_vertex_idx['right_hand'], :]
mesh_out_rhand_align = rigid_align_batch(mesh_out_rhand, mesh_gt_rhand)
eval_result['pa_mpvpe_l_hand'].append(
np.sqrt(np.sum(
(mesh_out_lhand_align - mesh_gt_lhand)**2, -1)).mean() *
1000)
eval_result['pa_mpvpe_r_hand'].append(
np.sqrt(np.sum(
(mesh_out_rhand_align - mesh_gt_rhand)**2, -1)).mean() *
1000)
eval_result['pa_mpvpe_hand'].append(
(np.sqrt(np.sum(
(mesh_out_lhand_align - mesh_gt_lhand)**2, -1)).mean() *
1000 +
np.sqrt(np.sum(
(mesh_out_rhand_align - mesh_gt_rhand)**2, -1)).mean() *
1000) / 2.)
mesh_out_lhand_align = mesh_out_lhand - np.dot(
smpl_x.J_regressor,
mesh_out).transpose(1,0,2)[:, smpl_x.J_regressor_idx['lwrist'], None, :] + np.dot(
smpl_x.J_regressor,
mesh_gt).transpose(1,0,2)[:, smpl_x.J_regressor_idx['lwrist'], None, :]
mesh_out_rhand_align = mesh_out_rhand - np.dot(
smpl_x.J_regressor,
mesh_out).transpose(1,0,2)[:, smpl_x.J_regressor_idx['rwrist'], None, :] + np.dot(
smpl_x.J_regressor,
mesh_gt).transpose(1,0,2)[:, smpl_x.J_regressor_idx['rwrist'], None, :]
eval_result['mpvpe_l_hand'].append(
np.sqrt(np.sum(
(mesh_out_lhand_align - mesh_gt_lhand)**2, -1)).mean() *
1000)
eval_result['mpvpe_r_hand'].append(
np.sqrt(np.sum(
(mesh_out_rhand_align - mesh_gt_rhand)**2, -1)).mean() *
1000)
eval_result['mpvpe_hand'].append(
(np.sqrt(np.sum(
(mesh_out_lhand_align - mesh_gt_lhand)**2, -1)).mean() *
1000 +
np.sqrt(np.sum(
(mesh_out_rhand_align - mesh_gt_rhand)**2, -1)).mean() *
1000) / 2.)
# MPVPE from face vertices
mesh_gt_face = mesh_gt[:, smpl_x.face_vertex_idx, :]
mesh_out_face = mesh_out[:, smpl_x.face_vertex_idx, :]
mesh_out_face_align = rigid_align_batch(mesh_out_face, mesh_gt_face)
eval_result['pa_mpvpe_face'].append(
np.sqrt(np.sum(
(mesh_out_face_align - mesh_gt_face)**2, -1)).mean() * 1000)
mesh_out_face_align = mesh_out_face - np.dot(
smpl_x.J_regressor,
mesh_out).transpose(1,0,2)[:, smpl_x.J_regressor_idx['neck'], None, :] + np.dot(
smpl_x.J_regressor,
mesh_gt).transpose(1,0,2)[:, smpl_x.J_regressor_idx['neck'], None, :]
eval_result['mpvpe_face'].append(
np.sqrt(np.sum(
(mesh_out_face_align - mesh_gt_face)**2, -1)).mean() * 1000)
# MPJPE from body joints
joint_gt_body = np.dot(smpl_x.j14_regressor, mesh_gt).transpose(1,0,2)
joint_out_body = np.dot(smpl_x.j14_regressor, mesh_out).transpose(1,0,2)
joint_out_body_align = rigid_align_batch(joint_out_body, joint_gt_body)
eval_result['pa_mpjpe_body'].append(
np.sqrt(np.sum(
(joint_out_body_align - joint_gt_body)**2, -1)).mean() *
1000)
# MPJPE from hand joints
joint_gt_lhand = np.dot(smpl_x.orig_hand_regressor['left'],
mesh_gt).transpose(1,0,2)
joint_out_lhand = np.dot(smpl_x.orig_hand_regressor['left'],
mesh_out).transpose(1,0,2)
joint_out_lhand_align = rigid_align_batch(joint_out_lhand,
joint_gt_lhand)
joint_gt_rhand = np.dot(smpl_x.orig_hand_regressor['right'],
mesh_gt).transpose(1,0,2)
joint_out_rhand = np.dot(smpl_x.orig_hand_regressor['right'],
mesh_out).transpose(1,0,2)
joint_out_rhand_align = rigid_align_batch(joint_out_rhand,
joint_gt_rhand)
eval_result['pa_mpjpe_l_hand'].append(
np.sqrt(np.sum(
(joint_out_lhand_align - joint_gt_lhand)**2, -1)).mean() *
1000)
eval_result['pa_mpjpe_r_hand'].append(
np.sqrt(np.sum(
(joint_out_rhand_align - joint_gt_rhand)**2, 1)).mean() *
1000)
eval_result['pa_mpjpe_hand'].append(
(np.sqrt(np.sum(
(joint_out_lhand_align - joint_gt_lhand)**2, -1)).mean() *
1000 +
np.sqrt(np.sum(
(joint_out_rhand_align - joint_gt_rhand)**2, -1)).mean() *
1000) / 2.)
save_error=True
if save_error:
writer = csv.writer(file)
new_line = [ann_idx[n],img_path[n], eval_result['mpvpe_all'][-1], eval_result['pa_mpvpe_all'][-1]]
writer.writerow(new_line)
self.save_idx += 1
# vis = cfg.vis
for k,v in eval_result.items():
if k != 'img_path' and k != 'ann_idx':
if len(v)>1:
eval_result[k] = np.concatenate(v,axis=0)
else:
eval_result[k] = np.array(v)
return eval_result
def print_eval_result(self, eval_result):
print('======EHF======')
print('PA MPVPE (All): %.2f mm' % np.mean(eval_result['pa_mpvpe_all']))
print('PA MPVPE (L-Hands): %.2f mm' %
np.mean(eval_result['pa_mpvpe_l_hand']))
print('PA MPVPE (R-Hands): %.2f mm' %
np.mean(eval_result['pa_mpvpe_r_hand']))
print('PA MPVPE (Hands): %.2f mm' %
np.mean(eval_result['pa_mpvpe_hand']))
print('PA MPVPE (Face): %.2f mm' %
np.mean(eval_result['pa_mpvpe_face']))
print()
print('MPVPE (All): %.2f mm' % np.mean(eval_result['mpvpe_all']))
print('MPVPE (L-Hands): %.2f mm' %
np.mean(eval_result['mpvpe_l_hand']))
print('MPVPE (R-Hands): %.2f mm' %
np.mean(eval_result['mpvpe_r_hand']))
print('MPVPE (Hands): %.2f mm' % np.mean(eval_result['mpvpe_hand']))
print('MPVPE (Face): %.2f mm' % np.mean(eval_result['mpvpe_face']))
print()
print('PA MPJPE (Body): %.2f mm' %
np.mean(eval_result['pa_mpjpe_body']))
print('PA MPJPE (L-Hands): %.2f mm' %
np.mean(eval_result['pa_mpjpe_l_hand']))
print('PA MPJPE (R-Hands): %.2f mm' %
np.mean(eval_result['pa_mpjpe_r_hand']))
print('PA MPJPE (Hands): %.2f mm' %
np.mean(eval_result['pa_mpjpe_hand']))
out_file = osp.join(cfg.result_dir,'ehf_test.txt')
if os.path.exists(out_file):
f = open(out_file, 'a+')
else:
f = open(out_file, 'w', encoding="utf-8")
f.write('\n')
f.write(f'{cfg.exp_name}\n')
f.write(f'EHF dataset: \n')
f.write('PA MPVPE (All): %.2f mm\n' %
np.mean(eval_result['pa_mpvpe_all']))
f.write('PA MPVPE (L-Hands): %.2f mm\n' %
np.mean(eval_result['pa_mpvpe_l_hand']))
f.write('PA MPVPE (R-Hands): %.2f mm\n' %
np.mean(eval_result['pa_mpvpe_r_hand']))
f.write('PA MPVPE (Hands): %.2f mm\n' %
np.mean(eval_result['pa_mpvpe_hand']))
f.write('PA MPVPE (Face): %.2f mm\n' %
np.mean(eval_result['pa_mpvpe_face']))
f.write('MPVPE (All): %.2f mm\n' % np.mean(eval_result['mpvpe_all']))
f.write('MPVPE (L-Hands): %.2f mm\n' %
np.mean(eval_result['mpvpe_l_hand']))
f.write('MPVPE (R-Hands): %.2f mm\n' %
np.mean(eval_result['mpvpe_r_hand']))
f.write('MPVPE (Hands): %.2f mm\n' % np.mean(eval_result['mpvpe_hand']))
f.write('MPVPE (Face): %.2f mm\n' % np.mean(eval_result['mpvpe_face']))
f.write('PA MPJPE (Body): %.2f mm\n' %
np.mean(eval_result['pa_mpjpe_body']))
f.write('PA MPJPE (L-Hands): %.2f mm\n' %
np.mean(eval_result['pa_mpjpe_l_hand']))
f.write('PA MPJPE (R-Hands): %.2f mm\n' %
np.mean(eval_result['pa_mpjpe_r_hand']))
f.write('PA MPJPE (Hands): %.2f mm\n' %
np.mean(eval_result['pa_mpjpe_hand']))
f.close()
|