File size: 6,379 Bytes
d7e58f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265

num_classes = 2
lr = 0.0001*1.414/10
param_dict_type = 'default'
lr_backbone = 1e-05*1.414/10
lr_backbone_names = ['backbone.0']
lr_linear_proj_names = ['reference_points', 'sampling_offsets']
lr_linear_proj_mult = 0.1
ddetr_lr_param = False
batch_size = 2
weight_decay = 0.0001
epochs = 200
lr_drop = 11
save_checkpoint_interval = 1
clip_max_norm = 0.1
onecyclelr = False
multi_step_lr = True
lr_drop_list = [30, 60]

modelname = 'aios_smplx'
frozen_weights = None
backbone = 'resnet50'
use_checkpoint = False

dilation = False
position_embedding = 'sine'
pe_temperatureH = 20
pe_temperatureW = 20
return_interm_indices = [1, 2, 3]
backbone_freeze_keywords = None
enc_layers = 6
dec_layers = 6
pre_norm = False
dim_feedforward = 2048
hidden_dim = 256
dropout = 0.0
nheads = 8
num_queries = 900
query_dim = 4
num_patterns = 0
random_refpoints_xy = False
fix_refpoints_hw = -1
dec_layer_number = None
num_feature_levels = 4
enc_n_points = 4
dec_n_points = 4
dln_xy_noise = 0.2
dln_hw_noise = 0.2
two_stage_type = 'standard'
two_stage_bbox_embed_share = False
two_stage_class_embed_share = False
two_stage_learn_wh = False
two_stage_default_hw = 0.05
two_stage_keep_all_tokens = False
rm_detach = None
num_select = 50
transformer_activation = 'relu'
batch_norm_type = 'FrozenBatchNorm2d'

masks = False
losses = ["smpl_pose", "smpl_beta", "smpl_expr",
        "smpl_kp2d","smpl_kp3d","smpl_kp3d_ra",'labels', 'boxes', "keypoints"]
# losses = ['labels', 'boxes', "keypoints"]
aux_loss = True
set_cost_class = 2.0
set_cost_bbox = 5.0
set_cost_giou = 2.0
set_cost_keypoints = 10.0
set_cost_kpvis = 0.0
set_cost_oks = 4.0
cls_loss_coef = 2.0
# keypoints_loss_coef = 10.0

smpl_pose_loss_root_coef = 10 * 0.1
smpl_pose_loss_body_coef = 1 * 0.1
smpl_pose_loss_lhand_coef = 1 * 0.1
smpl_pose_loss_rhand_coef = 1 * 0.1
smpl_pose_loss_jaw_coef = 1 * 0.1
smpl_beta_loss_coef = 0.01
smpl_expr_loss_coef = 0.01

# smpl_kp3d_loss_coef = 10
smpl_body_kp3d_loss_coef = 10.0 * 0.1
smpl_face_kp3d_loss_coef = 1.0 * 0.1
smpl_lhand_kp3d_loss_coef = 1 * 0.1
smpl_rhand_kp3d_loss_coef = 1 * 0.1

# kp3d ra
smpl_body_kp3d_ra_loss_coef = 10 * 0.1
smpl_face_kp3d_ra_loss_coef = 1 * 0.1
smpl_lhand_kp3d_ra_loss_coef = 1 * 0.1
smpl_rhand_kp3d_ra_loss_coef = 1 * 0.1


# smpl_kp2d_ba_loss_coef = 1.0
smpl_body_kp2d_loss_coef = 10.0 * 0.1
smpl_lhand_kp2d_loss_coef = 5.0 * 0.1
smpl_rhand_kp2d_loss_coef = 5.0 * 0.1
smpl_face_kp2d_loss_coef = 1.0 * 0.1

smpl_body_kp2d_ba_loss_coef = 0 * 0.1
smpl_face_kp2d_ba_loss_coef = 0 * 0.1
smpl_lhand_kp2d_ba_loss_coef = 0 * 0.1
smpl_rhand_kp2d_ba_loss_coef = 0 * 0.1

bbox_loss_coef = 5.0
body_bbox_loss_coef = 5.0
lhand_bbox_loss_coef = 5.0
rhand_bbox_loss_coef = 5.0
face_bbox_loss_coef = 5.0

giou_loss_coef = 2.0
body_giou_loss_coef = 2.0
rhand_giou_loss_coef = 2.0
lhand_giou_loss_coef = 2.0
face_giou_loss_coef = 2.0

keypoints_loss_coef = 10.0
rhand_keypoints_loss_coef = 10.0
lhand_keypoints_loss_coef = 10.0
face_keypoints_loss_coef = 10.0
       
oks_loss_coef=4.0
rhand_oks_loss_coef = 0.5
lhand_oks_loss_coef = 0.5
face_oks_loss_coef = 4.0


enc_loss_coef = 1.0
interm_loss_coef = 1.0
no_interm_box_loss = False
focal_alpha = 0.25
rm_self_attn_layers = None
indices_idx_list = [1, 2, 3, 4, 5, 6, 7]

decoder_sa_type = 'sa'
matcher_type = 'HungarianMatcher'
decoder_module_seq = ['sa', 'ca', 'ffn']
nms_iou_threshold = -1

dec_pred_bbox_embed_share = False
dec_pred_class_embed_share = False
dec_pred_pose_embed_share = False
body_only = True

# for dn
use_dn = True
dn_number = 100
dn_box_noise_scale = 0.4
dn_label_noise_ratio = 0.5
embed_init_tgt = False
dn_label_coef = 0.3
dn_bbox_coef = 0.5
dn_batch_gt_fuse = False
dn_attn_mask_type_list = ['match2dn', 'dn2dn', 'group2group']
dn_labelbook_size = 100

match_unstable_error = False

# for ema
use_ema = True
ema_decay = 0.9997
ema_epoch = 0

cls_no_bias = False
num_body_points = 17  # for coco
num_hand_points = 6 # for coco
num_face_points = 6  # for coco
num_group = 100
num_box_decoder_layers = 2
num_hand_face_decoder_layers = 4
no_mmpose_keypoint_evaluator = True
strong_aug = False

body_model_test=\
    dict(
        type='smplx',
        keypoint_src='smplx',
        num_expression_coeffs=10,
        num_betas=10,
        keypoint_dst='smplx_137',
        model_path='data/body_models/smplx',
        use_pca=False,
        use_face_contour=True)

body_model_train = \
    dict(
        type='smplx',
        keypoint_src='smplx',
        num_expression_coeffs=10,
        num_betas=10,
        keypoint_dst='smplx_137',
        model_path='data/body_models/smplx',
        use_pca=False,
        use_face_contour=True)

# will be update in exp
exp_name = 'output/exp52/dataset_debug'


end_epoch = 150
train_batch_size = 32

scheduler = 'step'
step_size = 20
gamma = 0.1

# continue
continue_train = True
pretrained_model_path = '../output/train_gta_synbody_ft_20230410_132110/model_dump/snapshot_2.pth.tar'

# dataset setting
# dataset_list = ['AGORA_MM','BEDLAM', 'COCO_NA']
# trainset_3d = ['AGORA_MM','BEDLAM', 'COCO_NA']
dataset_list = ['AGORA_MM','BEDLAM', 'COCO_NA']
trainset_3d = ['AGORA_MM','BEDLAM', 'COCO_NA']
trainset_2d = []
trainset_partition = {
            'AGORA_MM': 0.4, 
            'BEDLAM': 0.7,
            'COCO_NA': 1,
            
            # 'EgoBody_Egocentric': 1,
            # 'EgoBody_Kinect': 1.0,
            }
trainset_humandata = []
testset = 'INFERENCE_BEDLAM'
train_sizes=[480, 512, 544, 576, 608, 640, 672, 704, 736, 768, 800]
train_max_size=1333
test_sizes=[800]
test_max_size=1333
no_aug=False
# model
use_cache = True

## UBody setting
train_sample_interval = 10
test_sample_interval = 100
make_same_len = False

## input, output size
input_body_shape = (256, 192)
output_hm_shape = (16, 16, 12)
input_hand_shape = (256, 256)
output_hand_hm_shape = (16, 16, 16)
output_face_hm_shape = (8, 8, 8)
input_face_shape = (192, 192)
focal = (5000, 5000)  # virtual focal lengths
princpt = (input_body_shape[1] / 2, input_body_shape[0] / 2
           )  # virtual principal point position
body_3d_size = 2
hand_3d_size = 0.3
face_3d_size = 0.3
camera_3d_size = 2.5

bbox_ratio = 1.2

## directory
output_dir, model_dir, vis_dir, log_dir, result_dir, code_dir = None, None, None, None, None, None

agora_benchmark = 'na' # 'agora_model', 'test_only'

# strategy 
data_strategy = 'balance' # 'balance' need to define total_data_len
total_data_len = 'auto'