File size: 9,500 Bytes
d7e58f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.

import collections
import os
import pickle
import warnings

import hydra
import numpy as np
import torch
from nerf.dataset import get_nerf_datasets, trivial_collate
from nerf.nerf_renderer import RadianceFieldRenderer, visualize_nerf_outputs
from nerf.stats import Stats
from omegaconf import DictConfig
from visdom import Visdom


CONFIG_DIR = os.path.join(os.path.dirname(os.path.realpath(__file__)), "configs")


@hydra.main(config_path=CONFIG_DIR, config_name="lego")
def main(cfg: DictConfig):

    # Set the relevant seeds for reproducibility.
    np.random.seed(cfg.seed)
    torch.manual_seed(cfg.seed)

    # Device on which to run.
    if torch.cuda.is_available():
        device = "cuda"
    else:
        warnings.warn(
            "Please note that although executing on CPU is supported,"
            + "the training is unlikely to finish in reasonable time."
        )
        device = "cpu"

    # Initialize the Radiance Field model.
    model = RadianceFieldRenderer(
        image_size=cfg.data.image_size,
        n_pts_per_ray=cfg.raysampler.n_pts_per_ray,
        n_pts_per_ray_fine=cfg.raysampler.n_pts_per_ray,
        n_rays_per_image=cfg.raysampler.n_rays_per_image,
        min_depth=cfg.raysampler.min_depth,
        max_depth=cfg.raysampler.max_depth,
        stratified=cfg.raysampler.stratified,
        stratified_test=cfg.raysampler.stratified_test,
        chunk_size_test=cfg.raysampler.chunk_size_test,
        n_harmonic_functions_xyz=cfg.implicit_function.n_harmonic_functions_xyz,
        n_harmonic_functions_dir=cfg.implicit_function.n_harmonic_functions_dir,
        n_hidden_neurons_xyz=cfg.implicit_function.n_hidden_neurons_xyz,
        n_hidden_neurons_dir=cfg.implicit_function.n_hidden_neurons_dir,
        n_layers_xyz=cfg.implicit_function.n_layers_xyz,
        density_noise_std=cfg.implicit_function.density_noise_std,
        visualization=cfg.visualization.visdom,
    )

    # Move the model to the relevant device.
    model.to(device)

    # Init stats to None before loading.
    stats = None
    optimizer_state_dict = None
    start_epoch = 0

    checkpoint_path = os.path.join(hydra.utils.get_original_cwd(), cfg.checkpoint_path)
    if len(cfg.checkpoint_path) > 0:
        # Make the root of the experiment directory.
        checkpoint_dir = os.path.split(checkpoint_path)[0]
        os.makedirs(checkpoint_dir, exist_ok=True)

        # Resume training if requested.
        if cfg.resume and os.path.isfile(checkpoint_path):
            print(f"Resuming from checkpoint {checkpoint_path}.")
            loaded_data = torch.load(checkpoint_path)
            model.load_state_dict(loaded_data["model"])
            stats = pickle.loads(loaded_data["stats"])
            print(f"   => resuming from epoch {stats.epoch}.")
            optimizer_state_dict = loaded_data["optimizer"]
            start_epoch = stats.epoch

    # Initialize the optimizer.
    optimizer = torch.optim.Adam(
        model.parameters(),
        lr=cfg.optimizer.lr,
    )

    # Load the optimizer state dict in case we are resuming.
    if optimizer_state_dict is not None:
        optimizer.load_state_dict(optimizer_state_dict)
        optimizer.last_epoch = start_epoch

    # Init the stats object.
    if stats is None:
        stats = Stats(
            ["loss", "mse_coarse", "mse_fine", "psnr_coarse", "psnr_fine", "sec/it"],
        )

    # Learning rate scheduler setup.

    # Following the original code, we use exponential decay of the
    # learning rate: current_lr = base_lr * gamma ** (epoch / step_size)
    def lr_lambda(epoch):
        return cfg.optimizer.lr_scheduler_gamma ** (
            epoch / cfg.optimizer.lr_scheduler_step_size
        )

    # The learning rate scheduling is implemented with LambdaLR PyTorch scheduler.
    lr_scheduler = torch.optim.lr_scheduler.LambdaLR(
        optimizer, lr_lambda, last_epoch=start_epoch - 1, verbose=False
    )

    # Initialize the cache for storing variables needed for visualization.
    visuals_cache = collections.deque(maxlen=cfg.visualization.history_size)

    # Init the visualization visdom env.
    if cfg.visualization.visdom:
        viz = Visdom(
            server=cfg.visualization.visdom_server,
            port=cfg.visualization.visdom_port,
            use_incoming_socket=False,
        )
    else:
        viz = None

    # Load the training/validation data.
    train_dataset, val_dataset, _ = get_nerf_datasets(
        dataset_name=cfg.data.dataset_name,
        image_size=cfg.data.image_size,
    )

    if cfg.data.precache_rays:
        # Precache the projection rays.
        model.eval()
        with torch.no_grad():
            for dataset in (train_dataset, val_dataset):
                cache_cameras = [e["camera"].to(device) for e in dataset]
                cache_camera_hashes = [e["camera_idx"] for e in dataset]
                model.precache_rays(cache_cameras, cache_camera_hashes)

    train_dataloader = torch.utils.data.DataLoader(
        train_dataset,
        batch_size=1,
        shuffle=True,
        num_workers=0,
        collate_fn=trivial_collate,
    )

    # The validation dataloader is just an endless stream of random samples.
    val_dataloader = torch.utils.data.DataLoader(
        val_dataset,
        batch_size=1,
        num_workers=0,
        collate_fn=trivial_collate,
        sampler=torch.utils.data.RandomSampler(
            val_dataset,
            replacement=True,
            num_samples=cfg.optimizer.max_epochs,
        ),
    )

    # Set the model to the training mode.
    model.train()

    # Run the main training loop.
    for epoch in range(start_epoch, cfg.optimizer.max_epochs):
        stats.new_epoch()  # Init a new epoch.
        for iteration, batch in enumerate(train_dataloader):
            image, camera, camera_idx = batch[0].values()
            image = image.to(device)
            camera = camera.to(device)

            optimizer.zero_grad()

            # Run the forward pass of the model.
            nerf_out, metrics = model(
                camera_idx if cfg.data.precache_rays else None,
                camera,
                image,
            )

            # The loss is a sum of coarse and fine MSEs
            loss = metrics["mse_coarse"] + metrics["mse_fine"]

            # Take the training step.
            loss.backward()
            optimizer.step()

            # Update stats with the current metrics.
            stats.update(
                {"loss": float(loss), **metrics},
                stat_set="train",
            )

            if iteration % cfg.stats_print_interval == 0:
                stats.print(stat_set="train")

            # Update the visualization cache.
            if viz is not None:
                visuals_cache.append(
                    {
                        "camera": camera.cpu(),
                        "camera_idx": camera_idx,
                        "image": image.cpu().detach(),
                        "rgb_fine": nerf_out["rgb_fine"].cpu().detach(),
                        "rgb_coarse": nerf_out["rgb_coarse"].cpu().detach(),
                        "rgb_gt": nerf_out["rgb_gt"].cpu().detach(),
                        "coarse_ray_bundle": nerf_out["coarse_ray_bundle"],
                    }
                )

        # Adjust the learning rate.
        lr_scheduler.step()

        # Validation
        if epoch % cfg.validation_epoch_interval == 0 and epoch > 0:

            # Sample a validation camera/image.
            val_batch = next(val_dataloader.__iter__())
            val_image, val_camera, camera_idx = val_batch[0].values()
            val_image = val_image.to(device)
            val_camera = val_camera.to(device)

            # Activate eval mode of the model (lets us do a full rendering pass).
            model.eval()
            with torch.no_grad():
                val_nerf_out, val_metrics = model(
                    camera_idx if cfg.data.precache_rays else None,
                    val_camera,
                    val_image,
                )

            # Update stats with the validation metrics.
            stats.update(val_metrics, stat_set="val")
            stats.print(stat_set="val")

            if viz is not None:
                # Plot that loss curves into visdom.
                stats.plot_stats(
                    viz=viz,
                    visdom_env=cfg.visualization.visdom_env,
                    plot_file=None,
                )
                # Visualize the intermediate results.
                visualize_nerf_outputs(
                    val_nerf_out, visuals_cache, viz, cfg.visualization.visdom_env
                )

            # Set the model back to train mode.
            model.train()

        # Checkpoint.
        if (
            epoch % cfg.checkpoint_epoch_interval == 0
            and len(cfg.checkpoint_path) > 0
            and epoch > 0
        ):
            print(f"Storing checkpoint {checkpoint_path}.")
            data_to_store = {
                "model": model.state_dict(),
                "optimizer": optimizer.state_dict(),
                "stats": pickle.dumps(stats),
            }
            torch.save(data_to_store, checkpoint_path)


if __name__ == "__main__":
    main()