Spaces:
Running
on
L40S
Running
on
L40S
File size: 9,500 Bytes
d7e58f0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 |
#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
import collections
import os
import pickle
import warnings
import hydra
import numpy as np
import torch
from nerf.dataset import get_nerf_datasets, trivial_collate
from nerf.nerf_renderer import RadianceFieldRenderer, visualize_nerf_outputs
from nerf.stats import Stats
from omegaconf import DictConfig
from visdom import Visdom
CONFIG_DIR = os.path.join(os.path.dirname(os.path.realpath(__file__)), "configs")
@hydra.main(config_path=CONFIG_DIR, config_name="lego")
def main(cfg: DictConfig):
# Set the relevant seeds for reproducibility.
np.random.seed(cfg.seed)
torch.manual_seed(cfg.seed)
# Device on which to run.
if torch.cuda.is_available():
device = "cuda"
else:
warnings.warn(
"Please note that although executing on CPU is supported,"
+ "the training is unlikely to finish in reasonable time."
)
device = "cpu"
# Initialize the Radiance Field model.
model = RadianceFieldRenderer(
image_size=cfg.data.image_size,
n_pts_per_ray=cfg.raysampler.n_pts_per_ray,
n_pts_per_ray_fine=cfg.raysampler.n_pts_per_ray,
n_rays_per_image=cfg.raysampler.n_rays_per_image,
min_depth=cfg.raysampler.min_depth,
max_depth=cfg.raysampler.max_depth,
stratified=cfg.raysampler.stratified,
stratified_test=cfg.raysampler.stratified_test,
chunk_size_test=cfg.raysampler.chunk_size_test,
n_harmonic_functions_xyz=cfg.implicit_function.n_harmonic_functions_xyz,
n_harmonic_functions_dir=cfg.implicit_function.n_harmonic_functions_dir,
n_hidden_neurons_xyz=cfg.implicit_function.n_hidden_neurons_xyz,
n_hidden_neurons_dir=cfg.implicit_function.n_hidden_neurons_dir,
n_layers_xyz=cfg.implicit_function.n_layers_xyz,
density_noise_std=cfg.implicit_function.density_noise_std,
visualization=cfg.visualization.visdom,
)
# Move the model to the relevant device.
model.to(device)
# Init stats to None before loading.
stats = None
optimizer_state_dict = None
start_epoch = 0
checkpoint_path = os.path.join(hydra.utils.get_original_cwd(), cfg.checkpoint_path)
if len(cfg.checkpoint_path) > 0:
# Make the root of the experiment directory.
checkpoint_dir = os.path.split(checkpoint_path)[0]
os.makedirs(checkpoint_dir, exist_ok=True)
# Resume training if requested.
if cfg.resume and os.path.isfile(checkpoint_path):
print(f"Resuming from checkpoint {checkpoint_path}.")
loaded_data = torch.load(checkpoint_path)
model.load_state_dict(loaded_data["model"])
stats = pickle.loads(loaded_data["stats"])
print(f" => resuming from epoch {stats.epoch}.")
optimizer_state_dict = loaded_data["optimizer"]
start_epoch = stats.epoch
# Initialize the optimizer.
optimizer = torch.optim.Adam(
model.parameters(),
lr=cfg.optimizer.lr,
)
# Load the optimizer state dict in case we are resuming.
if optimizer_state_dict is not None:
optimizer.load_state_dict(optimizer_state_dict)
optimizer.last_epoch = start_epoch
# Init the stats object.
if stats is None:
stats = Stats(
["loss", "mse_coarse", "mse_fine", "psnr_coarse", "psnr_fine", "sec/it"],
)
# Learning rate scheduler setup.
# Following the original code, we use exponential decay of the
# learning rate: current_lr = base_lr * gamma ** (epoch / step_size)
def lr_lambda(epoch):
return cfg.optimizer.lr_scheduler_gamma ** (
epoch / cfg.optimizer.lr_scheduler_step_size
)
# The learning rate scheduling is implemented with LambdaLR PyTorch scheduler.
lr_scheduler = torch.optim.lr_scheduler.LambdaLR(
optimizer, lr_lambda, last_epoch=start_epoch - 1, verbose=False
)
# Initialize the cache for storing variables needed for visualization.
visuals_cache = collections.deque(maxlen=cfg.visualization.history_size)
# Init the visualization visdom env.
if cfg.visualization.visdom:
viz = Visdom(
server=cfg.visualization.visdom_server,
port=cfg.visualization.visdom_port,
use_incoming_socket=False,
)
else:
viz = None
# Load the training/validation data.
train_dataset, val_dataset, _ = get_nerf_datasets(
dataset_name=cfg.data.dataset_name,
image_size=cfg.data.image_size,
)
if cfg.data.precache_rays:
# Precache the projection rays.
model.eval()
with torch.no_grad():
for dataset in (train_dataset, val_dataset):
cache_cameras = [e["camera"].to(device) for e in dataset]
cache_camera_hashes = [e["camera_idx"] for e in dataset]
model.precache_rays(cache_cameras, cache_camera_hashes)
train_dataloader = torch.utils.data.DataLoader(
train_dataset,
batch_size=1,
shuffle=True,
num_workers=0,
collate_fn=trivial_collate,
)
# The validation dataloader is just an endless stream of random samples.
val_dataloader = torch.utils.data.DataLoader(
val_dataset,
batch_size=1,
num_workers=0,
collate_fn=trivial_collate,
sampler=torch.utils.data.RandomSampler(
val_dataset,
replacement=True,
num_samples=cfg.optimizer.max_epochs,
),
)
# Set the model to the training mode.
model.train()
# Run the main training loop.
for epoch in range(start_epoch, cfg.optimizer.max_epochs):
stats.new_epoch() # Init a new epoch.
for iteration, batch in enumerate(train_dataloader):
image, camera, camera_idx = batch[0].values()
image = image.to(device)
camera = camera.to(device)
optimizer.zero_grad()
# Run the forward pass of the model.
nerf_out, metrics = model(
camera_idx if cfg.data.precache_rays else None,
camera,
image,
)
# The loss is a sum of coarse and fine MSEs
loss = metrics["mse_coarse"] + metrics["mse_fine"]
# Take the training step.
loss.backward()
optimizer.step()
# Update stats with the current metrics.
stats.update(
{"loss": float(loss), **metrics},
stat_set="train",
)
if iteration % cfg.stats_print_interval == 0:
stats.print(stat_set="train")
# Update the visualization cache.
if viz is not None:
visuals_cache.append(
{
"camera": camera.cpu(),
"camera_idx": camera_idx,
"image": image.cpu().detach(),
"rgb_fine": nerf_out["rgb_fine"].cpu().detach(),
"rgb_coarse": nerf_out["rgb_coarse"].cpu().detach(),
"rgb_gt": nerf_out["rgb_gt"].cpu().detach(),
"coarse_ray_bundle": nerf_out["coarse_ray_bundle"],
}
)
# Adjust the learning rate.
lr_scheduler.step()
# Validation
if epoch % cfg.validation_epoch_interval == 0 and epoch > 0:
# Sample a validation camera/image.
val_batch = next(val_dataloader.__iter__())
val_image, val_camera, camera_idx = val_batch[0].values()
val_image = val_image.to(device)
val_camera = val_camera.to(device)
# Activate eval mode of the model (lets us do a full rendering pass).
model.eval()
with torch.no_grad():
val_nerf_out, val_metrics = model(
camera_idx if cfg.data.precache_rays else None,
val_camera,
val_image,
)
# Update stats with the validation metrics.
stats.update(val_metrics, stat_set="val")
stats.print(stat_set="val")
if viz is not None:
# Plot that loss curves into visdom.
stats.plot_stats(
viz=viz,
visdom_env=cfg.visualization.visdom_env,
plot_file=None,
)
# Visualize the intermediate results.
visualize_nerf_outputs(
val_nerf_out, visuals_cache, viz, cfg.visualization.visdom_env
)
# Set the model back to train mode.
model.train()
# Checkpoint.
if (
epoch % cfg.checkpoint_epoch_interval == 0
and len(cfg.checkpoint_path) > 0
and epoch > 0
):
print(f"Storing checkpoint {checkpoint_path}.")
data_to_store = {
"model": model.state_dict(),
"optimizer": optimizer.state_dict(),
"stats": pickle.dumps(stats),
}
torch.save(data_to_store, checkpoint_path)
if __name__ == "__main__":
main()
|