File size: 6,324 Bytes
d7e58f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.

import os
import warnings

import hydra
import numpy as np
import torch
from nerf.dataset import get_nerf_datasets, trivial_collate
from nerf.eval_video_utils import generate_eval_video_cameras
from nerf.nerf_renderer import RadianceFieldRenderer
from nerf.stats import Stats
from omegaconf import DictConfig
from PIL import Image


CONFIG_DIR = os.path.join(os.path.dirname(os.path.realpath(__file__)), "configs")


@hydra.main(config_path=CONFIG_DIR, config_name="lego")
def main(cfg: DictConfig):

    # Device on which to run.
    if torch.cuda.is_available():
        device = "cuda"
    else:
        warnings.warn(
            "Please note that although executing on CPU is supported,"
            + "the testing is unlikely to finish in reasonable time."
        )
        device = "cpu"

    # Initialize the Radiance Field model.
    model = RadianceFieldRenderer(
        image_size=cfg.data.image_size,
        n_pts_per_ray=cfg.raysampler.n_pts_per_ray,
        n_pts_per_ray_fine=cfg.raysampler.n_pts_per_ray,
        n_rays_per_image=cfg.raysampler.n_rays_per_image,
        min_depth=cfg.raysampler.min_depth,
        max_depth=cfg.raysampler.max_depth,
        stratified=cfg.raysampler.stratified,
        stratified_test=cfg.raysampler.stratified_test,
        chunk_size_test=cfg.raysampler.chunk_size_test,
        n_harmonic_functions_xyz=cfg.implicit_function.n_harmonic_functions_xyz,
        n_harmonic_functions_dir=cfg.implicit_function.n_harmonic_functions_dir,
        n_hidden_neurons_xyz=cfg.implicit_function.n_hidden_neurons_xyz,
        n_hidden_neurons_dir=cfg.implicit_function.n_hidden_neurons_dir,
        n_layers_xyz=cfg.implicit_function.n_layers_xyz,
        density_noise_std=cfg.implicit_function.density_noise_std,
    )

    # Move the model to the relevant device.
    model.to(device)

    # Resume from the checkpoint.
    checkpoint_path = os.path.join(hydra.utils.get_original_cwd(), cfg.checkpoint_path)
    if not os.path.isfile(checkpoint_path):
        raise ValueError(f"Model checkpoint {checkpoint_path} does not exist!")

    print(f"Loading checkpoint {checkpoint_path}.")
    loaded_data = torch.load(checkpoint_path)
    # Do not load the cached xy grid.
    # - this allows setting an arbitrary evaluation image size.
    state_dict = {
        k: v
        for k, v in loaded_data["model"].items()
        if "_grid_raysampler._xy_grid" not in k
    }
    model.load_state_dict(state_dict, strict=False)

    # Load the test data.
    if cfg.test.mode == "evaluation":
        _, _, test_dataset = get_nerf_datasets(
            dataset_name=cfg.data.dataset_name,
            image_size=cfg.data.image_size,
        )
    elif cfg.test.mode == "export_video":
        train_dataset, _, _ = get_nerf_datasets(
            dataset_name=cfg.data.dataset_name,
            image_size=cfg.data.image_size,
        )
        test_dataset = generate_eval_video_cameras(
            train_dataset,
            trajectory_type=cfg.test.trajectory_type,
            up=cfg.test.up,
            scene_center=cfg.test.scene_center,
            n_eval_cams=cfg.test.n_frames,
            trajectory_scale=cfg.test.trajectory_scale,
        )
        # store the video in directory (checkpoint_file - extension + '_video')
        export_dir = os.path.splitext(checkpoint_path)[0] + "_video"
        os.makedirs(export_dir, exist_ok=True)
    else:
        raise ValueError(f"Unknown test mode {cfg.test_mode}.")

    # Init the test dataloader.
    test_dataloader = torch.utils.data.DataLoader(
        test_dataset,
        batch_size=1,
        shuffle=False,
        num_workers=0,
        collate_fn=trivial_collate,
    )

    if cfg.test.mode == "evaluation":
        # Init the test stats object.
        eval_stats = ["mse_coarse", "mse_fine", "psnr_coarse", "psnr_fine", "sec/it"]
        stats = Stats(eval_stats)
        stats.new_epoch()
    elif cfg.test.mode == "export_video":
        # Init the frame buffer.
        frame_paths = []

    # Set the model to the eval mode.
    model.eval()

    # Run the main testing loop.
    for batch_idx, test_batch in enumerate(test_dataloader):
        test_image, test_camera, camera_idx = test_batch[0].values()
        if test_image is not None:
            test_image = test_image.to(device)
        test_camera = test_camera.to(device)

        # Activate eval mode of the model (lets us do a full rendering pass).
        model.eval()
        with torch.no_grad():
            test_nerf_out, test_metrics = model(
                None,  # we do not use pre-cached cameras
                test_camera,
                test_image,
            )

        if cfg.test.mode == "evaluation":
            # Update stats with the validation metrics.
            stats.update(test_metrics, stat_set="test")
            stats.print(stat_set="test")

        elif cfg.test.mode == "export_video":
            # Store the video frame.
            frame = test_nerf_out["rgb_fine"][0].detach().cpu()
            frame_path = os.path.join(export_dir, f"frame_{batch_idx:05d}.png")
            print(f"Writing {frame_path}.")
            Image.fromarray((frame.numpy() * 255.0).astype(np.uint8)).save(frame_path)
            frame_paths.append(frame_path)

    if cfg.test.mode == "evaluation":
        print(f"Final evaluation metrics on '{cfg.data.dataset_name}':")
        for stat in eval_stats:
            stat_value = stats.stats["test"][stat].get_epoch_averages()[0]
            print(f"{stat:15s}: {stat_value:1.4f}")

    elif cfg.test.mode == "export_video":
        # Convert the exported frames to a video.
        video_path = os.path.join(export_dir, "video.mp4")
        ffmpeg_bin = "ffmpeg"
        frame_regexp = os.path.join(export_dir, "frame_%05d.png")
        ffmcmd = (
            "%s -r %d -i %s -vcodec h264 -f mp4 -y -b 2000k -pix_fmt yuv420p %s"
            % (ffmpeg_bin, cfg.test.fps, frame_regexp, video_path)
        )
        ret = os.system(ffmcmd)
        if ret != 0:
            raise RuntimeError("ffmpeg failed!")


if __name__ == "__main__":
    main()