Spaces:
Sleeping
Sleeping
File size: 11,805 Bytes
d7e58f0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 |
import torch
import torch.nn as nn
import torch.nn.functional as F
import math
from util import box_ops
from util.misc import NestedTensor
from util.utils import NiceRepr
class GroupwiseMLP(nn.Module):
def __init__(self, num_class, input_dim, hidden_dim, output_dim,
num_layers):
super().__init__()
self.num_layers = num_layers
h = [hidden_dim] * (num_layers - 1)
self.layers = nn.ModuleList(
GroupWiseLinear(num_class, n, k)
for n, k in zip([input_dim] + h, h + [output_dim]))
def forward(self, x):
if x.dim() == 4:
resize_flag = True
c0, b, k, d = x.shape
x = x.flatten(0, 1)
else:
resize_flag = False
for i, layer in enumerate(self.layers):
x = F.relu(layer(x)) if i < self.num_layers - 1 else layer(x)
if resize_flag:
x = x.reshape(c0, b, k, -1)
return x
class GroupWiseLinear(nn.Module):
def __init__(self, num_class, input_dim, output_dim, bias=True):
super().__init__()
self.num_class = num_class
self.input_dim = input_dim
self.output_dim = output_dim
self.bias = bias
self.W = nn.Parameter(torch.Tensor(num_class, input_dim, output_dim))
if bias:
self.b = nn.Parameter(torch.Tensor(num_class, output_dim))
self.reset_parameters()
def reset_parameters(self):
stdv = 1. / math.sqrt(self.W.size(2))
for i in range(self.num_class):
for j in range(self.input_dim):
self.W[i][j].data.uniform_(-stdv, stdv)
if self.bias:
for i in range(self.num_class):
self.b[i].data.uniform_(-stdv, stdv)
def forward(self, x: torch.FloatTensor):
"""
Dim:
- b: batch size
- k: num_class
- d: input dim
- o: output dim
Input:
- x: shape(b,k,d) or (c0,b,k,d)
Output:
- x: shape(b,k,o) or (c0,b,k,o)
"""
if x.dim() == 4:
resize_flag = True
c0, b, k, d = x.shape
x = x.flatten(0, 1)
else:
resize_flag = False
x = torch.einsum('bkd,kdo->bko', x, self.W)
if self.bias:
x = torch.einsum('bko,ko->bko', x, self.b)
if resize_flag:
x = x.reshape(c0, b, k, -1)
return x
class MLP(nn.Module):
"""Very simple multi-layer perceptron (also called FFN)"""
def __init__(self, input_dim, hidden_dim, output_dim, num_layers):
super().__init__()
self.num_layers = num_layers
h = [hidden_dim] * (num_layers - 1)
self.layers = nn.ModuleList(
nn.Linear(n, k) for n, k in zip([input_dim] + h, h + [output_dim]))
def forward(self, x):
for i, layer in enumerate(self.layers):
x = F.relu(layer(x)) if i < self.num_layers - 1 else layer(x)
return x
@torch.no_grad()
def mask_sample(samples: NestedTensor, known_boxes):
"""[summary]
Args:
samples (NestedTensor): batch of imgs. B,3,H,W
known_boxes (list of knownBox): [knownbox_each_img x B]
Returns:
[Tensor]: Masked imgs. B,3,H,W.
"""
# print("HERE!!!!!!!!!")
# import pdb; pdb.set_trace()
boxes_flat = [
box_ops.box_cxcywh_to_xyxy(kbs[:, :4])
for idx, kbs in enumerate(known_boxes)
]
img_shapes = samples.imgsize()
device = samples.tensors.device
# ! TODO:
for idx, (shape, boxes) in enumerate(zip(img_shapes, boxes_flat)):
h, w = shape.tolist()
scale = torch.Tensor([w, h, w, h]).to(device)
boxes = boxes * scale
for box in boxes:
x1, y1, x2, y2 = [int(i) for i in box.tolist()]
samples.tensors[idx, :, y1:y2, x1:x2] = 0
return samples
class AssignResult(NiceRepr):
"""Stores assignments between predicted and truth boxes.
! Borrow from mmdetection
Attributes:
num_gts (int): the number of truth boxes considered when computing this
assignment
gt_inds (LongTensor): for each predicted box indicates the 1-based
index of the assigned truth box. 0 means unassigned and -1 means
ignore.
max_overlaps (FloatTensor): the iou between the predicted box and its
assigned truth box.
labels (None | LongTensor): If specified, for each predicted box
indicates the category label of the assigned truth box.
Example:
>>> # An assign result between 4 predicted boxes and 9 true boxes
>>> # where only two boxes were assigned.
>>> num_gts = 9
>>> max_overlaps = torch.LongTensor([0, .5, .9, 0])
>>> gt_inds = torch.LongTensor([-1, 1, 2, 0])
>>> labels = torch.LongTensor([0, 3, 4, 0])
>>> self = AssignResult(num_gts, gt_inds, max_overlaps, labels)
>>> print(str(self)) # xdoctest: +IGNORE_WANT
<AssignResult(num_gts=9, gt_inds.shape=(4,), max_overlaps.shape=(4,),
labels.shape=(4,))>
>>> # Force addition of gt labels (when adding gt as proposals)
>>> new_labels = torch.LongTensor([3, 4, 5])
>>> self.add_gt_(new_labels)
>>> print(str(self)) # xdoctest: +IGNORE_WANT
<AssignResult(num_gts=9, gt_inds.shape=(7,), max_overlaps.shape=(7,),
labels.shape=(7,))>
"""
def __init__(self, num_gts, gt_inds, max_overlaps, labels=None):
self.num_gts = num_gts
self.gt_inds = gt_inds
self.max_overlaps = max_overlaps
self.labels = labels
# Interface for possible user-defined properties
self._extra_properties = {}
@property
def num_preds(self):
"""int: the number of predictions in this assignment"""
return len(self.gt_inds)
def set_extra_property(self, key, value):
"""Set user-defined new property."""
assert key not in self.info
self._extra_properties[key] = value
def get_extra_property(self, key):
"""Get user-defined property."""
return self._extra_properties.get(key, None)
@property
def info(self):
"""dict: a dictionary of info about the object"""
basic_info = {
'num_gts': self.num_gts,
'num_preds': self.num_preds,
'gt_inds': self.gt_inds,
'max_overlaps': self.max_overlaps,
'labels': self.labels,
}
basic_info.update(self._extra_properties)
return basic_info
def __nice__(self):
"""str: a "nice" summary string describing this assign result"""
parts = []
parts.append(f'num_gts={self.num_gts!r}')
if self.gt_inds is None:
parts.append(f'gt_inds={self.gt_inds!r}')
else:
parts.append(f'gt_inds.shape={tuple(self.gt_inds.shape)!r}')
if self.max_overlaps is None:
parts.append(f'max_overlaps={self.max_overlaps!r}')
else:
parts.append('max_overlaps.shape='
f'{tuple(self.max_overlaps.shape)!r}')
if self.labels is None:
parts.append(f'labels={self.labels!r}')
else:
parts.append(f'labels.shape={tuple(self.labels.shape)!r}')
return ', '.join(parts)
@classmethod
def random(cls, **kwargs):
"""Create random AssignResult for tests or debugging.
Args:
num_preds: number of predicted boxes
num_gts: number of true boxes
p_ignore (float): probability of a predicted box assigned to an
ignored truth
p_assigned (float): probability of a predicted box not being
assigned
p_use_label (float | bool): with labels or not
rng (None | int | numpy.random.RandomState): seed or state
Returns:
:obj:`AssignResult`: Randomly generated assign results.
Example:
>>> from mmdet.core.bbox.assigners.assign_result import * # NOQA
>>> self = AssignResult.random()
>>> print(self.info)
"""
from util.utils import ensure_rng
rng = ensure_rng(kwargs.get('rng', None))
num_gts = kwargs.get('num_gts', None)
num_preds = kwargs.get('num_preds', None)
p_ignore = kwargs.get('p_ignore', 0.3)
p_assigned = kwargs.get('p_assigned', 0.7)
p_use_label = kwargs.get('p_use_label', 0.5)
num_classes = kwargs.get('p_use_label', 3)
if num_gts is None:
num_gts = rng.randint(0, 8)
if num_preds is None:
num_preds = rng.randint(0, 16)
if num_gts == 0:
max_overlaps = torch.zeros(num_preds, dtype=torch.float32)
gt_inds = torch.zeros(num_preds, dtype=torch.int64)
if p_use_label is True or p_use_label < rng.rand():
labels = torch.zeros(num_preds, dtype=torch.int64)
else:
labels = None
else:
import numpy as np
# Create an overlap for each predicted box
max_overlaps = torch.from_numpy(rng.rand(num_preds))
# Construct gt_inds for each predicted box
is_assigned = torch.from_numpy(rng.rand(num_preds) < p_assigned)
# maximum number of assignments constraints
n_assigned = min(num_preds, min(num_gts, is_assigned.sum()))
assigned_idxs = np.where(is_assigned)[0]
rng.shuffle(assigned_idxs)
assigned_idxs = assigned_idxs[0:n_assigned]
assigned_idxs.sort()
is_assigned[:] = 0
is_assigned[assigned_idxs] = True
is_ignore = torch.from_numpy(
rng.rand(num_preds) < p_ignore) & is_assigned
gt_inds = torch.zeros(num_preds, dtype=torch.int64)
true_idxs = np.arange(num_gts)
rng.shuffle(true_idxs)
true_idxs = torch.from_numpy(true_idxs)
gt_inds[is_assigned] = true_idxs[:n_assigned]
gt_inds = torch.from_numpy(
rng.randint(1, num_gts + 1, size=num_preds))
gt_inds[is_ignore] = -1
gt_inds[~is_assigned] = 0
max_overlaps[~is_assigned] = 0
if p_use_label is True or p_use_label < rng.rand():
if num_classes == 0:
labels = torch.zeros(num_preds, dtype=torch.int64)
else:
labels = torch.from_numpy(
# remind that we set FG labels to [0, num_class-1]
# since mmdet v2.0
# BG cat_id: num_class
rng.randint(0, num_classes, size=num_preds))
labels[~is_assigned] = 0
else:
labels = None
self = cls(num_gts, gt_inds, max_overlaps, labels)
return self
def add_gt_(self, gt_labels):
"""Add ground truth as assigned results.
Args:
gt_labels (torch.Tensor): Labels of gt boxes
"""
self_inds = torch.arange(1,
len(gt_labels) + 1,
dtype=torch.long,
device=gt_labels.device)
self.gt_inds = torch.cat([self_inds, self.gt_inds])
self.max_overlaps = torch.cat(
[self.max_overlaps.new_ones(len(gt_labels)), self.max_overlaps])
if self.labels is not None:
self.labels = torch.cat([gt_labels, self.labels])
def get_indices(self):
inds_used = torch.where(self.gt_inds > 0)[0]
tgt_inds = self.gt_inds[inds_used] - 1
return inds_used, tgt_inds
|