Spaces:
Running
on
L40S
Running
on
L40S
File size: 8,534 Bytes
d7e58f0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 |
"""Backbone modules."""
from collections import OrderedDict
import os
import torch
import torch.nn.functional as F
import torchvision
from torch import nn
from torchvision.models._utils import IntermediateLayerGetter
from typing import Dict, List
from util.misc import NestedTensor, clean_state_dict, is_main_process
from ..position_encoding import build_position_encoding
from .swin_transformer import build_swin_transformer
class FrozenBatchNorm2d(torch.nn.Module):
"""BatchNorm2d where the batch statistics and the affine parameters are
fixed.
Copy-paste from torchvision.misc.ops with added eps before rqsrt, without
which any other models than torchvision.models.resnet[18,34,50,101] produce
nans.
"""
def __init__(self, n):
super(FrozenBatchNorm2d, self).__init__()
self.register_buffer('weight', torch.ones(n))
self.register_buffer('bias', torch.zeros(n))
self.register_buffer('running_mean', torch.zeros(n))
self.register_buffer('running_var', torch.ones(n))
def _load_from_state_dict(self, state_dict, prefix, local_metadata, strict,
missing_keys, unexpected_keys, error_msgs):
num_batches_tracked_key = prefix + 'num_batches_tracked'
if num_batches_tracked_key in state_dict:
del state_dict[num_batches_tracked_key]
super(FrozenBatchNorm2d,
self)._load_from_state_dict(state_dict, prefix, local_metadata,
strict, missing_keys,
unexpected_keys, error_msgs)
def forward(self, x):
w = self.weight.reshape(1, -1, 1, 1)
b = self.bias.reshape(1, -1, 1, 1)
rv = self.running_var.reshape(1, -1, 1, 1)
rm = self.running_mean.reshape(1, -1, 1, 1)
eps = 1e-5
scale = w * (rv + eps).rsqrt()
bias = b - rm * scale
return x * scale + bias
class BackboneBase(nn.Module):
def __init__(self, backbone: nn.Module, train_backbone: bool,
num_channels: int, return_interm_indices: list):
super().__init__()
for name, parameter in backbone.named_parameters():
if not train_backbone or 'layer0' not in name and 'layer1' not in name and 'layer2' not in name and 'layer3' not in name and 'layer4' not in name:
parameter.requires_grad_(False)
return_layers = {}
for idx, layer_index in enumerate(return_interm_indices):
return_layers.update({
'layer{}'.format(5 - len(return_interm_indices) + idx):
'{}'.format(layer_index)
})
self.body = IntermediateLayerGetter(backbone,
return_layers=return_layers)
self.num_channels = num_channels
def forward(self, tensor_list: NestedTensor):
xs = self.body(tensor_list.tensors)
out: Dict[str, NestedTensor] = {}
for name, x in xs.items():
m = tensor_list.mask
assert m is not None
mask = F.interpolate(m[None].float(),
size=x.shape[-2:]).to(torch.bool)[0]
out[name] = NestedTensor(x, mask)
return out
class Backbone(BackboneBase):
"""ResNet backbone with frozen BatchNorm."""
def __init__(
self,
name: str,
train_backbone: bool,
dilation: bool,
return_interm_indices: list,
batch_norm=FrozenBatchNorm2d,
):
if name in ['resnet18', 'resnet34', 'resnet50', 'resnet101']:
# backbone = getattr(torchvision.models, name)(
# replace_stride_with_dilation=[False, False, dilation],
# pretrained=is_main_process(), norm_layer=batch_norm)
backbone = getattr(torchvision.models, name)(
replace_stride_with_dilation=[False, False, dilation],
pretrained=False,
norm_layer=batch_norm)
else:
raise NotImplementedError(
'Why you can get here with name {}'.format(name))
assert name not in (
'resnet18',
'resnet34'), 'Only resnet50 and resnet101 are available.'
assert return_interm_indices in [[0, 1, 2, 3], [1, 2, 3], [3]]
num_channels_all = [256, 512, 1024, 2048]
num_channels = num_channels_all[4 - len(return_interm_indices):]
super().__init__(backbone, train_backbone, num_channels,
return_interm_indices)
class Joiner(nn.Sequential):
def __init__(self, backbone, position_embedding):
super().__init__(backbone, position_embedding)
def forward(self, tensor_list: NestedTensor):
xs = self[0](tensor_list)
out: List[NestedTensor] = []
pos = []
for name, x in xs.items():
out.append(x)
pos.append(self[1](x).to(x.tensors.dtype))
return out, pos
def build_backbone(args):
"""Useful args:
- backbone: backbone name
- lr_backbone:
- dilation
- return_interm_indices: available: [0,1,2,3], [1,2,3], [3]
- backbone_freeze_keywords:
- use_checkpoint: for swin only for now
"""
position_embedding = build_position_encoding(args)
train_backbone = args.lr_backbone > 0
if not train_backbone:
raise ValueError('Please set lr_backbone > 0')
return_interm_indices = args.return_interm_indices
assert return_interm_indices in [[0, 1, 2, 3], [1, 2, 3], [3]] # [1,2,3]
backbone_freeze_keywords = args.backbone_freeze_keywords # None
use_checkpoint = getattr(args, 'use_checkpoint', False) # False
if args.backbone in ['resnet50', 'resnet101']:
backbone = Backbone(args.backbone,
train_backbone,
args.dilation,
return_interm_indices,
batch_norm=FrozenBatchNorm2d)
bb_num_channels = backbone.num_channels
elif args.backbone in [
'swin_T_224_1k', 'swin_B_224_22k', 'swin_B_384_22k',
'swin_L_224_22k', 'swin_L_384_22k'
]:
pretrain_img_size = int(args.backbone.split('_')[-2])
backbone = build_swin_transformer(
args.backbone,
pretrain_img_size=pretrain_img_size,
out_indices=tuple(return_interm_indices),
dilation=args.dilation,
use_checkpoint=use_checkpoint)
# freeze some layers
if backbone_freeze_keywords is not None:
for name, parameter in backbone.named_parameters():
for keyword in backbone_freeze_keywords:
if keyword in name:
parameter.requires_grad_(False)
break
pretrained_dir = os.environ.get('pretrain_model_path')
# import pdb
# pdb.set_trace()
PTDICT = {
'swin_T_224_1k': 'swin_tiny_patch4_window7_224.pth',
'swin_B_384_22k': 'swin_base_patch4_window12_384.pth',
'swin_L_384_22k': 'swin_large_patch4_window12_384_22k.pth',
}
pretrainedpath = os.path.join(pretrained_dir, PTDICT[args.backbone])
checkpoint = torch.load(pretrainedpath, map_location='cpu')['model']
from collections import OrderedDict
def key_select_function(keyname):
if 'head' in keyname:
return False
if args.dilation and 'layers.3' in keyname:
return False
return True
_tmp_st = OrderedDict({
k: v
for k, v in clean_state_dict(checkpoint).items()
if key_select_function(k)
})
_tmp_st_output = backbone.load_state_dict(_tmp_st, strict=False)
print(str(_tmp_st_output))
bb_num_channels = backbone.num_features[4 -
len(return_interm_indices):]
else:
raise NotImplementedError('Unknown backbone {}'.format(args.backbone))
assert len(bb_num_channels) == len(
return_interm_indices
), f'len(bb_num_channels) {len(bb_num_channels)} != len(return_interm_indices) {len(return_interm_indices)}'
model = Joiner(backbone, position_embedding)
model.num_channels = bb_num_channels
assert isinstance(
bb_num_channels,
List), 'bb_num_channels is expected to be a List but {}'.format(
type(bb_num_channels))
# import pdb; pdb.set_trace()
return model
|