File size: 8,478 Bytes
d7e58f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
import copy
import os
from typing import Iterable, Optional, Union

import numpy as np
import torch
from pytorch3d.renderer.cameras import CamerasBase

from detrsmpl.core.cameras import build_cameras
from detrsmpl.core.conventions.cameras.convert_convention import (
    convert_camera_matrix,
    convert_world_view,
)
from detrsmpl.core.conventions.cameras.convert_projection import \
    convert_perspective_to_weakperspective  # prevent yapf isort conflict
from detrsmpl.models.body_models.builder import build_body_model
from detrsmpl.utils.transforms import aa_to_rotmat, rotmat_to_aa


def convert_smpl_from_opencv_calibration(
        R: Union[np.ndarray, torch.Tensor],
        T: Union[np.ndarray, torch.Tensor],
        K: Optional[Union[np.ndarray, torch.Tensor]] = None,
        resolution: Optional[Union[Iterable[int], int]] = None,
        verts: Optional[Union[np.ndarray, torch.Tensor]] = None,
        poses: Optional[Union[np.ndarray, torch.Tensor]] = None,
        transl: Optional[Union[np.ndarray, torch.Tensor]] = None,
        model_path: Optional[str] = None,
        betas: Optional[Union[np.ndarray, torch.Tensor]] = None,
        model_type: Optional[str] = 'smpl',
        gender: Optional[str] = 'neutral'):
    """Convert opencv calibration smpl poses&transl parameters to model based
    poses&transl or verts.

    Args:
        R (Union[np.ndarray, torch.Tensor]): (frame, 3, 3)
        T (Union[np.ndarray, torch.Tensor]): [(frame, 3)
        K (Optional[Union[np.ndarray, torch.Tensor]], optional):
            (frame, 3, 3) or (frame, 4, 4). Defaults to None.
        resolution (Optional[Union[Iterable[int], int]], optional):
            (height, width). Defaults to None.
        verts (Optional[Union[np.ndarray, torch.Tensor]], optional):
            (frame, num_verts, 3). Defaults to None.
        poses (Optional[Union[np.ndarray, torch.Tensor]], optional):
            (frame, 72/165). Defaults to None.
        transl (Optional[Union[np.ndarray, torch.Tensor]], optional):
            (frame, 3). Defaults to None.
        model_path (Optional[str], optional): model path.
            Defaults to None.
        betas (Optional[Union[np.ndarray, torch.Tensor]], optional):
            (frame, 10). Defaults to None.
        model_type (Optional[str], optional): choose in 'smpl' or 'smplx'.
            Defaults to 'smpl'.
        gender (Optional[str], optional): choose in 'male', 'female',
            'neutral'.
            Defaults to 'neutral'.

    Raises:
        ValueError: wrong input poses or transl.

    Returns:
        Tuple[torch.Tensor]: Return converted poses, transl, pred_cam
            or verts, pred_cam.
    """
    R_, T_ = convert_world_view(R, T)

    RT = torch.eye(4, 4)[None]
    RT[:, :3, :3] = R_
    RT[:, :3, 3] = T_

    if verts is not None:
        poses = None
        betas = None
        transl = None
    else:
        assert poses is not None
        assert transl is not None
        if isinstance(poses, dict):
            poses = copy.deepcopy(poses)
            for k in poses:
                if isinstance(poses[k], np.ndarray):
                    poses[k] = torch.Tensor(poses[k])
        elif isinstance(poses, np.ndarray):
            poses = torch.Tensor(poses)
        elif isinstance(poses, torch.Tensor):
            poses = poses.clone()
        else:
            raise ValueError(f'Wrong data type of poses: {type(poses)}.')

        if isinstance(transl, np.ndarray):
            transl = torch.Tensor(transl)
        elif isinstance(transl, torch.Tensor):
            transl = transl.clone()
        else:
            raise ValueError('Should pass valid `transl`.')
        transl = transl.view(-1, 3)

        if isinstance(betas, np.ndarray):
            betas = torch.Tensor(betas)
        elif isinstance(betas, torch.Tensor):
            betas = betas.clone()

        body_model = build_body_model(
            dict(type=model_type,
                 model_path=os.path.join(model_path, model_type),
                 gender=gender,
                 model_type=model_type))
        if isinstance(poses, dict):
            poses.update({'transl': transl, 'betas': betas})
        else:
            if isinstance(poses, np.ndarray):
                poses = torch.tensor(poses)
            poses = body_model.tensor2dict(full_pose=poses,
                                           transl=transl,
                                           betas=betas)
        model_output = body_model(**poses)
        verts = model_output['vertices']

        global_orient = poses['global_orient']
        global_orient = rotmat_to_aa(R_ @ aa_to_rotmat(global_orient))
        poses['global_orient'] = global_orient
        poses['transl'] = None
        verts_rotated = model_output['vertices']
        rotated_pose = body_model.dict2tensor(poses)

    verts_converted = verts.clone().view(-1, 3)
    verts_converted = RT @ torch.cat(
        [verts_converted,
         torch.ones(verts_converted.shape[0], 1)], dim=-1).unsqueeze(-1)
    verts_converted = verts_converted.squeeze(-1)
    verts_converted = verts_converted[:, :3] / verts_converted[:, 3:]
    verts_converted = verts_converted.view(verts.shape[0], -1, 3)
    num_frame = verts_converted.shape[0]
    if poses is not None:
        transl = torch.mean(verts_converted - verts_rotated, dim=1)

    orig_cam = None
    if K is not None:
        zmean = torch.mean(verts_converted, dim=1)[:, 2]

        K, _, _ = convert_camera_matrix(K,
                                        is_perspective=True,
                                        convention_dst='opencv',
                                        convention_src='opencv',
                                        in_ndc_dst=True,
                                        in_ndc_src=False,
                                        resolution_src=resolution)
        K = K.repeat(num_frame, 1, 1)

        orig_cam = convert_perspective_to_weakperspective(
            K=K, zmean=zmean, in_ndc=True, resolution=resolution)

        if poses is not None:
            orig_cam[:, 0, 3] += transl[:, 0]
            orig_cam[:, 1, 3] += transl[:, 1]
    if poses is not None:
        return rotated_pose, orig_cam
    else:
        return verts_converted, orig_cam


def project_points(points3d: Union[np.ndarray, torch.Tensor],
                   cameras: CamerasBase = None,
                   resolution: Iterable[int] = None,
                   K: Union[torch.Tensor, np.ndarray] = None,
                   R: Union[torch.Tensor, np.ndarray] = None,
                   T: Union[torch.Tensor, np.ndarray] = None,
                   convention: str = 'opencv',
                   in_ndc: bool = False) -> Union[torch.Tensor, np.ndarray]:
    """Project 3d points to image.

    Args:
        points3d (Union[np.ndarray, torch.Tensor]): shape could be (..., 3).
        cameras (CamerasBase): pytorch3d cameras or mmhuman3d cameras.
        resolution (Iterable[int]): (height, width) for rectangle or width for
            square.
        K (Union[torch.Tensor, np.ndarray], optional): intrinsic matrix.
            Defaults to None.
        R (Union[torch.Tensor, np.ndarray], optional): rotation matrix.
            Defaults to None.
        T (Union[torch.Tensor, np.ndarray], optional): translation matrix.
            Defaults to None.
        convention (str, optional): camera convention. Defaults to 'opencv'.
        in_ndc (bool, optional): whether in NDC. Defaults to False.

    Returns:
        Union[torch.Tensor, np.ndarray]: transformed points of shape (..., 2).
    """
    if cameras is None:
        cameras = build_cameras(
            dict(type='perspective',
                 convention=convention,
                 in_ndc=in_ndc,
                 resolution=resolution,
                 K=K,
                 R=R,
                 T=T))
    if cameras.get_image_size() is not None:
        image_size = cameras.get_image_size()
    else:
        image_size = resolution
    if isinstance(points3d, np.ndarray):
        points3d = torch.Tensor(points3d[..., :3]).to(cameras.device)
        points2d = cameras.transform_points_screen(
            points3d, image_size=image_size).cpu().numpy()
    elif isinstance(points3d, torch.Tensor):
        points3d = points3d[..., :3].to(cameras.device)
        points2d = cameras.transform_points_screen(points3d,
                                                   image_size=image_size)
    return points2d