Spaces:
Sleeping
Sleeping
File size: 16,292 Bytes
d7e58f0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 |
import numpy as np
import torch
import torch.cuda.comm
import torch.nn as nn
from mmcv.runner.base_module import BaseModule
from torch.nn import functional as F
from detrsmpl.core.conventions.keypoints_mapping import get_flip_pairs
def norm_heatmap(norm_type, heatmap):
"""Normalize heatmap.
Args:
norm_type (str):
type of normalization. Currently only 'softmax' is supported
heatmap (torch.Tensor):
model output heatmap with shape (Bx29xF^2) where F^2 refers to
number of squared feature channels F
Returns:
heatmap (torch.Tensor):
normalized heatmap according to specified type with
shape (Bx29xF^2)
"""
# Input tensor shape: [N,C,...]
shape = heatmap.shape
if norm_type == 'softmax':
heatmap = heatmap.reshape(*shape[:2], -1)
# global soft max
heatmap = F.softmax(heatmap, 2)
return heatmap.reshape(*shape)
else:
raise NotImplementedError
class HybrIKHead(BaseModule):
"""HybrIK parameters regressor head.
Args:
feature_channel (int):
Number of input channels
deconv_dim (List[int]):
List of deconvolution dimensions
num_joints (int):
Number of keypoints
depth_dim (int):
Depth dimension
height_dim (int):
Height dimension
width_dim (int):
Width dimension
smpl_mean_params (str):
file name of the mean SMPL parameters
"""
def __init__(
self,
feature_channel=512,
deconv_dim=[256, 256, 256],
num_joints=29,
depth_dim=64,
height_dim=64,
width_dim=64,
smpl_mean_params=None,
):
super(HybrIKHead, self).__init__()
self.deconv_dim = deconv_dim
self._norm_layer = nn.BatchNorm2d
self.num_joints = num_joints
self.norm_type = 'softmax'
self.depth_dim = depth_dim
self.height_dim = height_dim
self.width_dim = width_dim
self.smpl_dtype = torch.float32
self.feature_channel = feature_channel
self.deconv_layers = self._make_deconv_layer()
self.final_layer = nn.Conv2d(self.deconv_dim[2],
self.num_joints * self.depth_dim,
kernel_size=1,
stride=1,
padding=0)
self.joint_pairs_24 = get_flip_pairs('smpl')
self.joint_pairs_29 = get_flip_pairs('hybrik_29')
self.leaf_pairs = ((0, 1), (3, 4))
self.root_idx_smpl = 0
# mean shape
init_shape = np.load(smpl_mean_params)
self.register_buffer('init_shape', torch.Tensor(init_shape).float())
self.avg_pool = nn.AdaptiveAvgPool2d(1)
self.fc1 = nn.Linear(self.feature_channel, 1024)
self.drop1 = nn.Dropout(p=0.5)
self.fc2 = nn.Linear(1024, 1024)
self.drop2 = nn.Dropout(p=0.5)
self.decshape = nn.Linear(1024, 10)
self.decphi = nn.Linear(1024, 23 * 2) # [cos(phi), sin(phi)]
def _make_deconv_layer(self):
deconv_layers = []
deconv1 = nn.ConvTranspose2d(self.feature_channel,
self.deconv_dim[0],
kernel_size=4,
stride=2,
padding=int(4 / 2) - 1,
bias=False)
bn1 = self._norm_layer(self.deconv_dim[0])
deconv2 = nn.ConvTranspose2d(self.deconv_dim[0],
self.deconv_dim[1],
kernel_size=4,
stride=2,
padding=int(4 / 2) - 1,
bias=False)
bn2 = self._norm_layer(self.deconv_dim[1])
deconv3 = nn.ConvTranspose2d(self.deconv_dim[1],
self.deconv_dim[2],
kernel_size=4,
stride=2,
padding=int(4 / 2) - 1,
bias=False)
bn3 = self._norm_layer(self.deconv_dim[2])
deconv_layers.append(deconv1)
deconv_layers.append(bn1)
deconv_layers.append(nn.ReLU(inplace=True))
deconv_layers.append(deconv2)
deconv_layers.append(bn2)
deconv_layers.append(nn.ReLU(inplace=True))
deconv_layers.append(deconv3)
deconv_layers.append(bn3)
deconv_layers.append(nn.ReLU(inplace=True))
return nn.Sequential(*deconv_layers)
def _initialize(self):
for name, m in self.deconv_layers.named_modules():
if isinstance(m, nn.ConvTranspose2d):
nn.init.normal_(m.weight, std=0.001)
elif isinstance(m, nn.BatchNorm2d):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)
for m in self.final_layer.modules():
if isinstance(m, nn.Conv2d):
nn.init.normal_(m.weight, std=0.001)
nn.init.constant_(m.bias, 0)
def uvd_to_cam(self,
uvd_jts,
trans_inv,
intrinsic_param,
joint_root,
depth_factor,
return_relative=True):
"""Project uvd coordinates to camera frame.
Args:
uvd_jts (torch.Tensor):
uvd coordinates with shape (BxNum_jointsx3)
trans_inv (torch.Tensor):
inverse affine transformation matrix with shape (Bx2x3)
intrinsic_param (torch.Tensor):
camera intrinsic matrix with shape (Bx3x3)
joint_root (torch.Tensor):
root joint coordinate with shape (Bx3)
depth_factor (float):
depth factor with shape (Bx1)
return_relative (bool):
Store True to return root normalized relative coordinates.
Default: True.
Returns:
xyz_jts (torch.Tensor):
uvd coordinates in camera frame with shape (BxNum_jointsx3)
"""
assert uvd_jts.dim() == 3 and uvd_jts.shape[2] == 3, uvd_jts.shape
uvd_jts_new = uvd_jts.clone()
# if torch.sum(torch.isnan(uvd_jts)) > 0:
# aaa= 1
assert torch.sum(torch.isnan(uvd_jts)) == 0, ('uvd_jts', uvd_jts)
# remap uv coordinate to input space
uvd_jts_new[:, :, 0] = (uvd_jts[:, :, 0] + 0.5) * self.width_dim * 4
uvd_jts_new[:, :, 1] = (uvd_jts[:, :, 1] + 0.5) * self.height_dim * 4
# remap d to mm
uvd_jts_new[:, :, 2] = uvd_jts[:, :, 2] * depth_factor
assert torch.sum(torch.isnan(uvd_jts_new)) == 0, ('uvd_jts_new',
uvd_jts_new)
dz = uvd_jts_new[:, :, 2]
# transform in-bbox coordinate to image coordinate
uv_homo_jts = torch.cat(
(uvd_jts_new[:, :, :2], torch.ones_like(uvd_jts_new)[:, :, 2:]),
dim=2)
# batch-wise matrix multiply : (B,1,2,3) * (B,K,3,1) -> (B,K,2,1)
uv_jts = torch.matmul(trans_inv.unsqueeze(1),
uv_homo_jts.unsqueeze(-1))
# transform (u,v,1) to (x,y,z)
cam_2d_homo = torch.cat((uv_jts, torch.ones_like(uv_jts)[:, :, :1, :]),
dim=2)
# batch-wise matrix multiply : (B,1,3,3) * (B,K,3,1) -> (B,K,3,1)
xyz_jts = torch.matmul(intrinsic_param.unsqueeze(1), cam_2d_homo)
xyz_jts = xyz_jts.squeeze(dim=3)
# recover absolute z : (B,K) + (B,1)
abs_z = dz + joint_root[:, 2].unsqueeze(-1)
# multiply absolute z : (B,K,3) * (B,K,1)
xyz_jts = xyz_jts * abs_z.unsqueeze(-1)
if return_relative:
# (B,K,3) - (B,1,3)
xyz_jts = xyz_jts - joint_root.unsqueeze(1)
xyz_jts = xyz_jts / depth_factor.unsqueeze(-1)
return xyz_jts
def flip_uvd_coord(self, pred_jts, flip=False, flatten=True):
"""Flip uvd coordinates.
Args:
pred_jts (torch.Tensor):
predicted uvd coordinates with shape (Bx87)
flip (bool):
Store True to flip uvd coordinates. Default: False.
flatten (bool):
Store True to reshape uvd_coordinates to shape (Bx29x3)
Default: True
Returns:
pred_jts (torch.Tensor):
flipped uvd coordinates with shape (Bx29x3)
"""
if flatten:
assert pred_jts.dim() == 2
num_batches = pred_jts.shape[0]
pred_jts = pred_jts.reshape(num_batches, self.num_joints, 3)
else:
assert pred_jts.dim() == 3
num_batches = pred_jts.shape[0]
# flip
if flip:
pred_jts[:, :, 0] = -pred_jts[:, :, 0]
else:
pred_jts[:, :, 0] = -1 / self.width_dim - pred_jts[:, :, 0]
for pair in self.joint_pairs_29:
dim0, dim1 = pair
idx = torch.Tensor((dim0, dim1)).long()
inv_idx = torch.Tensor((dim1, dim0)).long()
pred_jts[:, idx] = pred_jts[:, inv_idx]
return pred_jts
def flip_phi(self, pred_phi):
"""Flip phi.
Args:
pred_phi (torch.Tensor): phi in shape (Num_twistx2)
Returns:
pred_phi (torch.Tensor): flipped phi in shape (Num_twistx2)
"""
pred_phi[:, :, 1] = -1 * pred_phi[:, :, 1]
for pair in self.joint_pairs_24:
dim0, dim1 = pair
idx = torch.Tensor((dim0 - 1, dim1 - 1)).long()
inv_idx = torch.Tensor((dim1 - 1, dim0 - 1)).long()
pred_phi[:, idx] = pred_phi[:, inv_idx]
return pred_phi
def forward(self,
feature,
trans_inv,
intrinsic_param,
joint_root,
depth_factor,
smpl_layer,
flip_item=None,
flip_output=False):
"""Forward function.
Args:
feature (torch.Tensor): features extracted from backbone
trans_inv (torch.Tensor):
inverse affine transformation matrix with shape (Bx2x3)
intrinsic_param (torch.Tensor):
camera intrinsic matrix with shape (Bx3x3)
joint_root (torch.Tensor):
root joint coordinate with shape (Bx3)
depth_factor (float):
depth factor with shape (Bx1)
smpl_layer (torch.Tensor):
smpl body model
flip_item (List[torch.Tensor]|None):
list containing items to flip
flip_output (bool):
Store True to flip output. Default: False
Returns:
output (dict): Dict containing model predictions.
"""
batch_size = feature.shape[0]
x0 = feature
out = self.deconv_layers(x0)
out = self.final_layer(out)
out = out.reshape((out.shape[0], self.num_joints, -1))
out = norm_heatmap(self.norm_type, out)
assert out.dim() == 3, out.shape
if self.norm_type == 'sigmoid':
maxvals, _ = torch.max(out, dim=2, keepdim=True)
else:
maxvals = torch.ones((*out.shape[:2], 1),
dtype=torch.float,
device=out.device)
heatmaps = out / out.sum(dim=2, keepdim=True)
heatmaps = heatmaps.reshape(
(heatmaps.shape[0], self.num_joints, self.depth_dim,
self.height_dim, self.width_dim))
hm_x = heatmaps.sum((2, 3))
hm_y = heatmaps.sum((2, 4))
hm_z = heatmaps.sum((3, 4))
hm_x = hm_x * torch.cuda.comm.broadcast(torch.arange(
hm_x.shape[-1]).type(torch.cuda.FloatTensor),
devices=[hm_x.device.index])[0]
hm_y = hm_y * torch.cuda.comm.broadcast(torch.arange(
hm_y.shape[-1]).type(torch.cuda.FloatTensor),
devices=[hm_y.device.index])[0]
hm_z = hm_z * torch.cuda.comm.broadcast(torch.arange(
hm_z.shape[-1]).type(torch.cuda.FloatTensor),
devices=[hm_z.device.index])[0]
coord_x = hm_x.sum(dim=2, keepdim=True)
coord_y = hm_y.sum(dim=2, keepdim=True)
coord_z = hm_z.sum(dim=2, keepdim=True)
coord_x = coord_x / float(self.width_dim) - 0.5
coord_y = coord_y / float(self.height_dim) - 0.5
coord_z = coord_z / float(self.depth_dim) - 0.5
# -0.5 ~ 0.5
pred_uvd_jts_29 = torch.cat((coord_x, coord_y, coord_z), dim=2)
pred_uvd_jts_29_flat = pred_uvd_jts_29.reshape(
(batch_size, self.num_joints * 3))
x0 = self.avg_pool(x0)
x0 = x0.view(x0.size(0), -1)
init_shape = self.init_shape.expand(batch_size, -1) # (B, 10,)
xc = x0
xc = self.fc1(xc)
xc = self.drop1(xc)
xc = self.fc2(xc)
xc = self.drop2(xc)
delta_shape = self.decshape(xc)
pred_shape = delta_shape + init_shape
pred_phi = self.decphi(xc)
if flip_item is not None:
assert flip_output
pred_uvd_jts_29_orig, pred_phi_orig, pred_leaf_orig, \
pred_shape_orig = flip_item
if flip_output:
pred_uvd_jts_29 = self.flip_uvd_coord(pred_uvd_jts_29,
flatten=False,
shift=True)
if flip_output and flip_item is not None:
pred_uvd_jts_29 = (pred_uvd_jts_29 + pred_uvd_jts_29_orig.reshape(
batch_size, 29, 3)) / 2
pred_uvd_jts_29_flat = pred_uvd_jts_29.reshape(
(batch_size, self.num_joints * 3))
# -0.5 ~ 0.5
# Rotate back
pred_xyz_jts_29 = self.uvd_to_cam(pred_uvd_jts_29, trans_inv,
intrinsic_param, joint_root,
depth_factor)
assert torch.sum(
torch.isnan(pred_xyz_jts_29)) == 0, ('pred_xyz_jts_29',
pred_xyz_jts_29)
pred_xyz_jts_29 = pred_xyz_jts_29 - \
pred_xyz_jts_29[:, self.root_idx_smpl, :].unsqueeze(1)
pred_phi = pred_phi.reshape(batch_size, 23, 2)
if flip_output:
pred_phi = self.flip_phi(pred_phi)
if flip_output and flip_item is not None:
pred_phi = (pred_phi + pred_phi_orig) / 2
pred_shape = (pred_shape + pred_shape_orig) / 2
hybrik_output = smpl_layer(
pose_skeleton=pred_xyz_jts_29.type(self.smpl_dtype) * 2,
betas=pred_shape.type(self.smpl_dtype),
phis=pred_phi.type(self.smpl_dtype),
global_orient=None,
return_verts=True)
pred_vertices = hybrik_output['vertices'].float()
# -0.5 ~ 0.5
pred_xyz_jts_24_struct = hybrik_output['joints'].float() / 2
# -0.5 ~ 0.5
pred_xyz_jts_17 = hybrik_output['joints_from_verts'].float() / 2
pred_poses = hybrik_output['poses'].float().reshape(
batch_size, 24, 3, 3)
pred_xyz_jts_24 = pred_xyz_jts_29[:, :24, :].reshape(batch_size, 72)
pred_xyz_jts_24_struct = pred_xyz_jts_24_struct.reshape(batch_size, 72)
pred_xyz_jts_17 = pred_xyz_jts_17.reshape(batch_size, 17 * 3)
output = {
'pred_phi': pred_phi,
'pred_delta_shape': delta_shape,
'pred_shape': pred_shape,
'pred_pose': pred_poses,
'pred_uvd_jts': pred_uvd_jts_29_flat,
'pred_xyz_jts_24': pred_xyz_jts_24,
'pred_xyz_jts_24_struct': pred_xyz_jts_24_struct,
'pred_xyz_jts_17': pred_xyz_jts_17,
'pred_vertices': pred_vertices,
'maxvals': maxvals,
}
return output
|